Simulation of electrodynamic suspension systems for levitating vehicles. I. Modelling of electromagnetic behaviour of maglev vehicles with electrodynamic suspension
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An original computational technique, aimed at electromagnetic analysis of devices for particle physics and fusion applications, has been adapted to simulation of the magnetic levitation (maglev) transport. The paper describes modelling approaches and their implementation. A description of electrodynamic suspension systems is presented employing both superconducting and permanent magnets. The technique is oriented to parallel computations on supercomputers to take advantage of improved computational efficiency. Bibliogr. 22. Il. 5. Table 1.
Keywords: magnetic levitation, vehicle, electromagnetic suspension, finite elements, magnetic field, eddy current, lifting and drag forces, superconducting coil
Mots-clés : simulation, permanent magnet.
@article{VSPUI_2014_4_a0,
     author = {V. M. Amoskov and D. N. Arslanova and A. M. Bazarov and A. V. Belov and V. A. Belyakov and T. F. Belyakova and A. A. Firsov and E. I. Gapionok and M. V. Kaparkova and V. P. Kukhtin and E. A. Lamzin and M. S. Larionov and N. A. Maximenkova and V. M. Mikhailov and A. N. Nezhentzev and D. A. Ovsyannikov and A. D. Ovsyannikov and I. Yu. Rodin and N. A. Shatil and S. E. Sychevsky and V. N. Vasiliev and A. A. Zaitzev},
     title = {Simulation of electrodynamic suspension systems for levitating vehicles. {I.} {Modelling} of electromagnetic behaviour of maglev vehicles with electrodynamic suspension},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {5--16},
     year = {2014},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a0/}
}
TY  - JOUR
AU  - V. M. Amoskov
AU  - D. N. Arslanova
AU  - A. M. Bazarov
AU  - A. V. Belov
AU  - V. A. Belyakov
AU  - T. F. Belyakova
AU  - A. A. Firsov
AU  - E. I. Gapionok
AU  - M. V. Kaparkova
AU  - V. P. Kukhtin
AU  - E. A. Lamzin
AU  - M. S. Larionov
AU  - N. A. Maximenkova
AU  - V. M. Mikhailov
AU  - A. N. Nezhentzev
AU  - D. A. Ovsyannikov
AU  - A. D. Ovsyannikov
AU  - I. Yu. Rodin
AU  - N. A. Shatil
AU  - S. E. Sychevsky
AU  - V. N. Vasiliev
AU  - A. A. Zaitzev
TI  - Simulation of electrodynamic suspension systems for levitating vehicles. I. Modelling of electromagnetic behaviour of maglev vehicles with electrodynamic suspension
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 5
EP  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a0/
LA  - en
ID  - VSPUI_2014_4_a0
ER  - 
%0 Journal Article
%A V. M. Amoskov
%A D. N. Arslanova
%A A. M. Bazarov
%A A. V. Belov
%A V. A. Belyakov
%A T. F. Belyakova
%A A. A. Firsov
%A E. I. Gapionok
%A M. V. Kaparkova
%A V. P. Kukhtin
%A E. A. Lamzin
%A M. S. Larionov
%A N. A. Maximenkova
%A V. M. Mikhailov
%A A. N. Nezhentzev
%A D. A. Ovsyannikov
%A A. D. Ovsyannikov
%A I. Yu. Rodin
%A N. A. Shatil
%A S. E. Sychevsky
%A V. N. Vasiliev
%A A. A. Zaitzev
%T Simulation of electrodynamic suspension systems for levitating vehicles. I. Modelling of electromagnetic behaviour of maglev vehicles with electrodynamic suspension
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 5-16
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a0/
%G en
%F VSPUI_2014_4_a0
V. M. Amoskov; D. N. Arslanova; A. M. Bazarov; A. V. Belov; V. A. Belyakov; T. F. Belyakova; A. A. Firsov; E. I. Gapionok; M. V. Kaparkova; V. P. Kukhtin; E. A. Lamzin; M. S. Larionov; N. A. Maximenkova; V. M. Mikhailov; A. N. Nezhentzev; D. A. Ovsyannikov; A. D. Ovsyannikov; I. Yu. Rodin; N. A. Shatil; S. E. Sychevsky; V. N. Vasiliev; A. A. Zaitzev. Simulation of electrodynamic suspension systems for levitating vehicles. I. Modelling of electromagnetic behaviour of maglev vehicles with electrodynamic suspension. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 5-16. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a0/

[1] Amoskov V., Arslanova D., Belov A., Belyakov V., Belyakova T,, Gapionok E., Krylova N., Kukhtin V., Lamzin E., Maximenkova N., Mazul I., Sytchevsky S., “Global computational models for EM transient analysis and design optimization of the ITER machine”, Fusion Eng. Des., 87:9, Sept. (2012), 1519–1532 | DOI

[2] Bakhvalov Yu., Bocharov V., Vinokurov V., Nagorsky V., Vehicles with magnetic suspension, eds. V. Bocharov, V. Nagorsky, Mashinostroenie, M., 1991, 320 pp.

[3] Dzenzersky V., Omelyanenko V., Vasiliev S., Matin V., Sergeev S., High-speed levitating transport with electrodynamic suspension, Naukova dumka, Kiev, 2001, 482 pp.

[4] Kim K., Transportation systems employing magnetic suspension and superconducting magnet technology, Educational and Methodological Centre for Rail Transport Technology, M., 2007, 360 pp.

[5] Zaitzev A., Talashkin G., Sokolova Yu., Maglev transportation, St. Petersburg State Transport University, St. Petersburg, 2010, 160 pp.

[6] Russian Railways-Partner Magazine, 19:167, October (2009) http://en.wikipedia.org/wiki/maglev

[7] Halbach K., “Applications of permanent magnets in accelerators and electron storage rings”, Journal of Applied Physics, 57 (1985), 3605 | DOI

[8] Post R. F., Ryutov D. D., The Inductrack Approach to Magnetic Levitaiton, UCRL-ID-124115, Lawrence Livermore National Laboratory, New York, April 2000, 160 pp.

[9] Post R. F., Inductrack Magnet Configuration, U.S. Patent, 6,633,217 B2

[10] Post R. F., Laminated track design for Inductrack maglev systems, U. S. Patent, 6,758,146

[11] Hoburg J. F., Post R. F., “A Laminated Track for the Inductrack System: Theory and Experiment”, 18th Intern. Conference on Magnetically Levitated Systems and Linear Drives (Shanghai, China, October 25–29, 2004)

[12] Amoskov V., Belov A., Belyakov V., Belyakova T., Filatov O., Gapionok E., Glukhih M., Kukhtin V., Lamzin E., Maximenkova N., Mingalev B., Sychevsky S., KLONDIKE 1.0: computer code for 3D simulation of magnet systems of complex geometry with retentive and non-retentive materials and current carrying components, Computer Program Register, Registration Certificate 2003612487, Rospatent, M., Nov. 12, 2003

[13] Amoskov V., Belov A., Belyakov V., Belyakova T., Filatov O., Gapionok E., Garkusha D., Kokotkov V., Kukhtin V., Lamzin E., Sychevsky S., TYPHOON 2.0: computer code for 3D simulation of electromagnetic transients using the thin shell approach, Computer Program Register, Registration Certificate 2003612496, Rospatent, M., Nov. 12, 2003

[14] Belov A., Doinikov N., Duke A., Kokotkov V., Korolkov M., Kotov V., Kukhtin V., Lamzin E., Sytchevsky S., “Transient electromagnetic analysis in tokamaks using TYPHOON code”, Fusion Engineering and Design, 31 (1996), 167–180 | DOI

[15] Belov A., Belyakova T., Filatov O., Kukhtin V., Lamzin E., KOMPOT/M 1.0: computer code for 3D simulation of magnetostatic fields in the analysis and synthesis of magnetic systems for electrophysical devices, Computer Program Register, Registration Certificate 2003612492, Rospatent, M., Nov. 12, 2003 | Zbl

[16] Belov A., Belyakova T., Gornikel I., Kuchinsky V., Kukhtin V., Lamzin E., Semchenkov A., Shatil N., “3D Field Simulation of Complex Systems With Permanent Magnets and Excitation Coils”, IEEE Transactions on Applied Superconductivity, 18:2, June (2008), 1609–1612 | DOI

[17] Glukhih V., Belyakov V., Mineev A., Applied physics of thermonuclear fusion, St. Petersburg Polytechnic University Publ., St. Petersburg, 2006, 348 pp.

[18] Koshlyakov N., Gliner E., Smirnov M., Partial differential equations of mathematical physics, Vyshaya shkola, M., 1970, 712 pp. | Zbl

[19] Tamm I., Basis of Electricity Theory, Nauka, M., 1989, 504 pp.

[20] Shneerson G., Fields and transients in high-power facilities, Energoatomizdat, M., 1992, 413 pp.

[21] Shatil N., VENECIA 1.0: computer code for simulation of thermohydraulic transients in superconducting magnets with various coolants, Computer Program Register, Registration Certificate 2009611707, Rospatent, M., March 31, 2009

[22] Thome R. J., Tarrh J. M., MHD and Fusion Magnets. Field and Force Design Concepts, J. Wiley and Sons, Inc., New York, 1982, 413 pp.