Keywords: generalized solution, solution smoothness, implementation of the boundary conditions, steady heat conduction equation, crack.
@article{VSPUI_2014_3_a6,
author = {A. S. Chernikova},
title = {Heat distribution on a plane which consists of two different non-homogeneous materials with a simi-bounded interphase crack},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {66--81},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a6/}
}
TY - JOUR AU - A. S. Chernikova TI - Heat distribution on a plane which consists of two different non-homogeneous materials with a simi-bounded interphase crack JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 66 EP - 81 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a6/ LA - ru ID - VSPUI_2014_3_a6 ER -
%0 Journal Article %A A. S. Chernikova %T Heat distribution on a plane which consists of two different non-homogeneous materials with a simi-bounded interphase crack %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 66-81 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a6/ %G ru %F VSPUI_2014_3_a6
A. S. Chernikova. Heat distribution on a plane which consists of two different non-homogeneous materials with a simi-bounded interphase crack. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 66-81. http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a6/
[1] Glushko A. V., Loginova E. A., “Asymptotic properties of solutions of the stationary heat distribution in a non-homogeneous plane with a crack”, Vestnik of Voronezh State University. Ser. Fizika, matematika, 2010, no. 2, 47–50
[2] Loginova E. A., “The construction of the solution of the problem of stationary heat distribution in a non-homogeneous plane with a crack and its asymptotic behaviour”, Sovremennye metody teorii funkcii i smezhnye zadachi, Materialy Voronezhskoi zimnei matematicheskoi shkoly, Izd-vo Voronezh State University, Voronezh, 2011, 202–203
[3] Loginova E. A., “The solution of the problem about heat distribution in a non-homogeneous material with a crack at the unlimited big amount of time”, Sovremennie problemy prikladnoi matematiki, teorii upravlenija i matematicheskogo modelirovanija, PMTUMM-2011, Materialy chetvertoi mezhdunarodnoi nauchnoi konferencii, Voronezh State University, Voronezh, 2011, 181–182
[4] Loginova E. A., “The construction of the solution of the problem about heat distribution in a non-homogeneous material with a crack”, Vestnik St. Petersburg University, ser. 1: Matematica, mekhanika, astronomia, 2012, no. 1, 40–47
[5] Chernikova A. S., “About the asymptotics of the solution of the problem about the stationary heat distribution in the plane with a cross-crack which is studied near the borders”, Sovremenyi metody teorii kraevyh zadach, Materialy Voronezhskoi vesennei matematicheskoi shkoly “Pontrjaginskie chtenija-XXII”, IPC Voronezh State University, Voronezh, 2011, 205–207
[6] Petrova V., Schmauder S., “Thermal fracture of a functionally graded/homogeneous bimaterial with a system of cracks”, Teoretical and Applied Fracture Mechanics, 55 (2011), 148–157 | DOI
[7] Petrova V., Herrmann K., “Thermal crack problems for a bimaterial with an interface crack and internal defects”, Intern. Journal of Fracture, 128 (2004), 49–63 | DOI | Zbl
[8] Li Y.-D., Lee K. Y., “An antiplane crack perpendicular to the weak/microdiscontinuous interface in a bi-FGM structure with exponential and linear non-homogeneities”, Intern. Journal of Fracture, 146 (2007), 203–211 | DOI | Zbl
[9] Karaulova N. E., Petrova V. E., “Interaction of cracks in functionally graded/homogeneous two-component material under the action of an antiplane shear”, Vestnik of Voronezh State University, ser. Fizika, matematika, 2011, no. 1, 157–167 | MR
[10] Mecshhepyakova T. V., Petrova V. E., “The effect of internal defects at the interface condition between the two elastic materials with a longitudinal shear”, Nauka — proizvodstvu, 2005, no. 3, 20–23 | MR
[11] Lee K. Y., Park S.-J., “Thermal stress intensity factors for partially insulated interface crack under uniform heat flow”, Eng. Fract. Mech., 50:4 (1995), 475–482 | DOI
[12] Glushko A. V., Ryabenko A. S., Chernikova A. S., “The construction of a stationary temperature field for two half-adjacent spaces with an interphase crack”, Sovremenyi metody teorii kraevyh zadach, Materialy Voronezhskoi vesennei matematicheskoi shkoly “Pontrjaginskie chtenija-XXIII”, IPC Voronezh State University, Voronezh, 2012, 49–50
[13] Chernikova A. S., “The asymptotic ot the solution of the problem about linking two non-homogeneous materials with a crack at the border”, Sovremenyi metody teorii kraevyh zadach, Materialy Voronezhskoi vesennei matematicheskoi shkoly “Pontrjaginskie chtenija-XXIV”, IPC Voronezh State University, Voronezh, 2013, 216–217
[14] Glushko A. V., Chernikova A. S., “The problem of the heat distribution at linking of two non-homogeneous materials with a crack”, Differcial'nye uravnenija, teorija funkcii, nelineinyi analiz i optimizacija, Trudy Vserossiiskoi nauchno-prakticheskoi konferencii (23–26 april 2013), RUDN, M., 2013, 58–59
[15] Glushko A. V., Ryabenko A. S., Chernikova A. S., “About the stationary heat distribution in the two adjacent half-planes with a crack on the boundary”, Vestnik of Voronezh State University, ser. Fizika, matematika, 2014, no. 3, 87–99
[16] Vladimirov V. S., The equations of mathematical physics, Nauka, M., 1976, 527 pp.
[17] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and the functional analysis, 7-e izd., Fizmatlit, M., 1949, 572 pp.
[18] Vatson G. N., The theory of Bessel's functions, Per. s 2 angl. izd. V. S. Bermana, Izd-vo inostr. lit., M., 1949, 799 pp.
[19] Kudryavcev L. D., Kurs matematicheskovo analiza, v 3 t., v. 3, Garmonicheskii analiz. Elementy funkcional'nogo analiza, Drofa, M., 2006, 350 pp.