Heat distribution on a plane which consists of two different non-homogeneous materials with a simi-bounded interphase crack
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 66-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of transmission for the system of equations is considered. It describes the stationary distribution of heat in the plane consisting of two half-planes, filled with non-homogeneous materials with different exponential coefficients of thermal conductivity. There is a semi-bounded crack on the boundary of these materials. A definition of the classical solution of this problem is given and the conditions of its existence are formulated. Explicit formulas of this solution are worked out. This research developed the results which are obtained for the bounded crack and they are the basis for further study of asymptotic representations of the solution and its first derivatives near the bounded crack. Bibliogr. 19.
Mots-clés : transmission problem
Keywords: generalized solution, solution smoothness, implementation of the boundary conditions, steady heat conduction equation, crack.
@article{VSPUI_2014_3_a6,
     author = {A. S. Chernikova},
     title = {Heat distribution on a plane which consists of two different non-homogeneous materials with a simi-bounded interphase crack},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {66--81},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a6/}
}
TY  - JOUR
AU  - A. S. Chernikova
TI  - Heat distribution on a plane which consists of two different non-homogeneous materials with a simi-bounded interphase crack
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 66
EP  - 81
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a6/
LA  - ru
ID  - VSPUI_2014_3_a6
ER  - 
%0 Journal Article
%A A. S. Chernikova
%T Heat distribution on a plane which consists of two different non-homogeneous materials with a simi-bounded interphase crack
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 66-81
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a6/
%G ru
%F VSPUI_2014_3_a6
A. S. Chernikova. Heat distribution on a plane which consists of two different non-homogeneous materials with a simi-bounded interphase crack. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 66-81. http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a6/

[1] Glushko A. V., Loginova E. A., “Asymptotic properties of solutions of the stationary heat distribution in a non-homogeneous plane with a crack”, Vestnik of Voronezh State University. Ser. Fizika, matematika, 2010, no. 2, 47–50

[2] Loginova E. A., “The construction of the solution of the problem of stationary heat distribution in a non-homogeneous plane with a crack and its asymptotic behaviour”, Sovremennye metody teorii funkcii i smezhnye zadachi, Materialy Voronezhskoi zimnei matematicheskoi shkoly, Izd-vo Voronezh State University, Voronezh, 2011, 202–203

[3] Loginova E. A., “The solution of the problem about heat distribution in a non-homogeneous material with a crack at the unlimited big amount of time”, Sovremennie problemy prikladnoi matematiki, teorii upravlenija i matematicheskogo modelirovanija, PMTUMM-2011, Materialy chetvertoi mezhdunarodnoi nauchnoi konferencii, Voronezh State University, Voronezh, 2011, 181–182

[4] Loginova E. A., “The construction of the solution of the problem about heat distribution in a non-homogeneous material with a crack”, Vestnik St. Petersburg University, ser. 1: Matematica, mekhanika, astronomia, 2012, no. 1, 40–47

[5] Chernikova A. S., “About the asymptotics of the solution of the problem about the stationary heat distribution in the plane with a cross-crack which is studied near the borders”, Sovremenyi metody teorii kraevyh zadach, Materialy Voronezhskoi vesennei matematicheskoi shkoly “Pontrjaginskie chtenija-XXII”, IPC Voronezh State University, Voronezh, 2011, 205–207

[6] Petrova V., Schmauder S., “Thermal fracture of a functionally graded/homogeneous bimaterial with a system of cracks”, Teoretical and Applied Fracture Mechanics, 55 (2011), 148–157 | DOI

[7] Petrova V., Herrmann K., “Thermal crack problems for a bimaterial with an interface crack and internal defects”, Intern. Journal of Fracture, 128 (2004), 49–63 | DOI | Zbl

[8] Li Y.-D., Lee K. Y., “An antiplane crack perpendicular to the weak/microdiscontinuous interface in a bi-FGM structure with exponential and linear non-homogeneities”, Intern. Journal of Fracture, 146 (2007), 203–211 | DOI | Zbl

[9] Karaulova N. E., Petrova V. E., “Interaction of cracks in functionally graded/homogeneous two-component material under the action of an antiplane shear”, Vestnik of Voronezh State University, ser. Fizika, matematika, 2011, no. 1, 157–167 | MR

[10] Mecshhepyakova T. V., Petrova V. E., “The effect of internal defects at the interface condition between the two elastic materials with a longitudinal shear”, Nauka — proizvodstvu, 2005, no. 3, 20–23 | MR

[11] Lee K. Y., Park S.-J., “Thermal stress intensity factors for partially insulated interface crack under uniform heat flow”, Eng. Fract. Mech., 50:4 (1995), 475–482 | DOI

[12] Glushko A. V., Ryabenko A. S., Chernikova A. S., “The construction of a stationary temperature field for two half-adjacent spaces with an interphase crack”, Sovremenyi metody teorii kraevyh zadach, Materialy Voronezhskoi vesennei matematicheskoi shkoly “Pontrjaginskie chtenija-XXIII”, IPC Voronezh State University, Voronezh, 2012, 49–50

[13] Chernikova A. S., “The asymptotic ot the solution of the problem about linking two non-homogeneous materials with a crack at the border”, Sovremenyi metody teorii kraevyh zadach, Materialy Voronezhskoi vesennei matematicheskoi shkoly “Pontrjaginskie chtenija-XXIV”, IPC Voronezh State University, Voronezh, 2013, 216–217

[14] Glushko A. V., Chernikova A. S., “The problem of the heat distribution at linking of two non-homogeneous materials with a crack”, Differcial'nye uravnenija, teorija funkcii, nelineinyi analiz i optimizacija, Trudy Vserossiiskoi nauchno-prakticheskoi konferencii (23–26 april 2013), RUDN, M., 2013, 58–59

[15] Glushko A. V., Ryabenko A. S., Chernikova A. S., “About the stationary heat distribution in the two adjacent half-planes with a crack on the boundary”, Vestnik of Voronezh State University, ser. Fizika, matematika, 2014, no. 3, 87–99

[16] Vladimirov V. S., The equations of mathematical physics, Nauka, M., 1976, 527 pp.

[17] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and the functional analysis, 7-e izd., Fizmatlit, M., 1949, 572 pp.

[18] Vatson G. N., The theory of Bessel's functions, Per. s 2 angl. izd. V. S. Bermana, Izd-vo inostr. lit., M., 1949, 799 pp.

[19] Kudryavcev L. D., Kurs matematicheskovo analiza, v 3 t., v. 3, Garmonicheskii analiz. Elementy funkcional'nogo analiza, Drofa, M., 2006, 350 pp.