Asymptotic quiescent position for systems of homogeneous non-autonomous differential equations
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 58-65
Cet article a éte moissonné depuis la source Math-Net.Ru
A system of homogeneous non-autonomous differential equations with disturbed right-hand parts is considered. The zero solution doesn’t exist for the considered system but the question about behavior of solutions starting near zero is still open. Conditions for existing of asymptotic quiescent position are determined if the right parts of the system satisfies provided conditions. A corresponding theorem is proved based on second Lyapunov method which allows to use the provided function for further researches. In conclusion an illustrative example is given which avows obtained results. Bibliogr. 5. Il. 1.
Keywords:
asymptotic quiescent position, asymptotic stability, non-autonomous differential equations, homogeneous differential equation, uniform average.
@article{VSPUI_2014_3_a5,
author = {O. G. Tikhomirov and E. V. Temkina},
title = {Asymptotic quiescent position for systems of homogeneous non-autonomous differential equations},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {58--65},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a5/}
}
TY - JOUR AU - O. G. Tikhomirov AU - E. V. Temkina TI - Asymptotic quiescent position for systems of homogeneous non-autonomous differential equations JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 58 EP - 65 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a5/ LA - ru ID - VSPUI_2014_3_a5 ER -
%0 Journal Article %A O. G. Tikhomirov %A E. V. Temkina %T Asymptotic quiescent position for systems of homogeneous non-autonomous differential equations %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 58-65 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a5/ %G ru %F VSPUI_2014_3_a5
O. G. Tikhomirov; E. V. Temkina. Asymptotic quiescent position for systems of homogeneous non-autonomous differential equations. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 58-65. http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a5/
[1] Zubov V. I., Oscillations and waves, Izd-vo Leningr. un-ta, Leningrad, 1989, 415 pp.
[2] Kupcova S. E., “About asymptotic behaviour of systems nonlinear nonstationary differential equations”, Trudy Srednevolzhsk. matem. ob-va, 8:1 (2006), 235–243 | Zbl
[3] Aleksandrov A. Ju., Stability of nonlinear dynamical systems, Izd-vo S.-Peterb. un-ta, St. Petersburg, 2004, 183 pp.
[4] Tihomirov O. G., “Stability of systems homogeneous nonstationary differential equations”, Vestnik St. Petersburg University, ser. 10: Applied mathematics, computer science, control processes, 2007, no. 3, 123–129
[5] Zubov V. I., Stability of motion, Vysshaja shkola, M., 1973, 272 pp. | MR | Zbl