Mots-clés : transcription, soliton
@article{VSPUI_2014_3_a3,
author = {V. S. Novoselov},
title = {On mathematical model of {DNA} mobility},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {36--45},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a3/}
}
V. S. Novoselov. On mathematical model of DNA mobility. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 36-45. http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a3/
[1] M. S. Giljarov (gl. red.), Encyclopedic Dictionary of Biology, redkol: A. A. Baev, G. G. Vinberg, G. A. Zavarzin i dr., Sov. jenciklopedija, M., 1989, 863 pp.
[2] Bresler S. E., Molecular Biology, Nauka, L., 1973, 578 pp.
[3] Vol'kenshtejn M. V., Molecular Biophysics, Nauka, M., 1975, 616 pp.
[4] Vol'kenshtejn M. V., Biophysics, Nauka, M., 1981, 576 pp.
[5] Chosh A., Bansal M., “A glossury of DNA structures from A to Z”, Acta Crystallogr. D, 59:4 (2003), 620–626 | DOI
[6] Nechiporenko Ju. D., Gurskij G. V., “Thermodynamic binding model DNA ligands”, Biofizika, 48 (2003), 773–796
[7] Nechiporenko Ju. D., Polozov R. V., Nechiporenko D. Ju., Il'icheva I. A., Vorob'ev E. A., Gorohovskij G. V., Gurskij G. V., “In Mathematical models of gene regulation: mechanical perturbations of DNA structure”, ICE-2006 (mathematics, computer, education), v. 2, Nauch. issled. centr, M.–Izhevsk, 2006, 393–403
[8] Benham C., Mielke S., “DNA mechanics”, Annu Rew. Biomed Eng., 7 (2005), 21–53 | DOI
[9] Novoselov V. S., Analytical mechanics of systems with variable masses, Izd-vo Leningr. un-ta, L., 1969, 240 pp.
[10] Englander S. W., Kallenbach N. R., Heeger A. J., Krumhansl J. A., Litwin S., “Nature of the open state in long polynucleotide double helices: possibility of solution excitations”, Proc. Natl. Acad. Sci. USA, 77:12 (1980), 7222–7226 | DOI
[11] Reznichenko G. Ju., Mathematical models in biology and ecology, Izhevsk. in-t komp'juternyh issledovanij, M.–Izhevsk, 2003, 184 pp.
[12] Jakushevich L. V., How to build a mathematical model of the unwinding of the DNA double helix?
[13] Jakushevich L. V., Krasnobaeva L. A., Shapovalov A. V., Kinetro N. D., “One and two-soliton solutions of cinus-Gordon equation in the annex to the DNA”, Biofizika, 50:3 (2005), 450–455
[14] Shustorovich E. M., Chemical bond, Nauka, M., 1973, 232 pp.
[15] Tahtadzhan L. A., Faddeev L. D., Hamiltonian approach to the theory of solitons, Nauka, M., 1986, 528 pp. | MR
[16] Zaharov V. E., “The inverse scattering”: Kunin I. L., The theory of elastic media with microstructure, Nauka, M., 1975, 226–273
[17] Dodd R., Eilbeck J., Gibbon J., Morris H., Solitons and nonlinear wave equations, Per. s angl. V. I. Macieva, V. P. Gurarija, ed. A. B. Shabat, Mir, M., 1988, 694 pp.
[18] Mahan'kov P. G., “Physics of elementary particles and atomic nuclei”, Fizika jelementarnyh chastic i atomnogo jadra, 4:1 (1983), 123–180
[19] Novoselov V. S., Korolev V. S., Analytical Mechanics controlled system, studies allowance, Izd-vo S.-Peterb. un-ta, St. Petersburg, 2005, 298 pp.
[20] Novoselov V. S., Statistical Dynamics, proc. allowance, Izd-vo S.-Peterb. un-ta, St. Petersburg, 2009, 393 pp.
[21] Tihonov A. N., “Systems of differential equations containing small parameters in the derivatives”, Matem. sb., 31(73):3 (1952), 575–586 | MR | Zbl
[22] Vasil'eva A. B., Butuzov V. F., Asymptotic expansion of solutions singularly perturbed equations, Nauka, M., 1973, 272 pp. | MR | Zbl
[23] Dobrynina V. I., Biological Chemistry, Medicina, M., 1976, 504 pp.