On evolution of the integral of the product of two real functions with Levin–Stechkin type of inequality
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 28-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Classical integral Levin–Stechkin inequality known since 1948. This article received more complex and accurate inequality, with which you can get the upper or lower bounds of the integral of the product of two real functions,using the generalized Fourier coefficients of each of these functions separately. Fourier coefficients calculated according to a certain Chebyshev set of functions and it is assumed that the real valued functions added to the specified set also form Chebyshev systems. It is suggested also that all functions in Chebyshev systems are mutually orthogonal, as it is customary in the proof of Levin–Stechkin inequality. The result is formulated with theorem, which being illustrated with five examples. In two examples Chebyshev systems are orthogonal polynomials on finite intervals, in following two examples the cited functions have specific form and it is shown that increasing the number of Fourier coefficients you can enclose the original integral in narrowing the plug from both the bottom and top boundaries. Last example shows how to use the theorem in the problem of estimation of the variance of the number of zeros of Gaussian stationary process. Bibliogr. 9.
Keywords: the integral of the product of two real functions, Levin–Stechkin type of inequality, Chebyshev system of functions, generalized Fourier coefficients.
@article{VSPUI_2014_3_a2,
     author = {R. N. Miroshin},
     title = {On evolution of the integral of the product of two real functions with {Levin{\textendash}Stechkin} type of inequality},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {28--35},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a2/}
}
TY  - JOUR
AU  - R. N. Miroshin
TI  - On evolution of the integral of the product of two real functions with Levin–Stechkin type of inequality
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 28
EP  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a2/
LA  - ru
ID  - VSPUI_2014_3_a2
ER  - 
%0 Journal Article
%A R. N. Miroshin
%T On evolution of the integral of the product of two real functions with Levin–Stechkin type of inequality
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 28-35
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a2/
%G ru
%F VSPUI_2014_3_a2
R. N. Miroshin. On evolution of the integral of the product of two real functions with Levin–Stechkin type of inequality. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 28-35. http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a2/

[1] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Per. s angl. V. I. Levina; s dop. V. I. Levina, S. B. Stechkina, Gos. izd-vo inostr. lit., M., 1948, 456 pp.

[2] Karlin S., Studden W. J., Tchebycheff systems: with applications in analysis and statistics, Per. s angl., ed. S. M. Ermakov, Nauka, M., 1976, 568 pp.

[3] Miroshin R. N., “Generalization of Levin–Stechkin inequality”, Vestnik St. Petersburg University, ser. 10: Applied mathematics, computer science, control processes, 2013, no. 1, 18–21 | MR

[4] Miroshin R. N., “To use generalized Levin–Stechkin inequality in the theory of local interaction”, Vestnik St. Petersburg University, ser. 1: Mathematica, mekhanika, astronomia, 2013, no. 3, 126–130

[5] Bateman H., Erdelyi A., Higher transcendental functions (in 2 v.), per. s angl. N. Ja. Vilenkina, v. 2, Nauka, M., 1966, 205 pp.

[6] Milton Abramowitz, Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, per. s angl., pod red. V. A. Ditkina, L. N. Karmazinoj, Nauka, M., 1979, 832 pp.

[7] Krein M. G., Nudelman A. A., Markov moment problem and extremal problems. Ideas and problems of Chebyshev and Markov and their further development, Nauka, M., 1973, 551 pp.

[8] Miroshin R. N., “On the variance of the number of zeros of a Gaussian stationary process”, Vestnik St. Petersburg University, ser. 1: Mathematica, makhanika, astronomia, 2001, no. 1, 40–47

[9] Miroshin R. N., Khalidov I. A., Local methods in continuum mechanics, Izd-vo S.-Peterb. un-ta, St-Petrsburg, 2002, 304 pp.