Suboptimal control construction for the model predictive controller
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 141-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Model predictive control (MPC) is a well-known and widely used control algorithm. The problem of real-time MPC implementation for complex systems is of particular practical interest due to the complexity of the associated optimization problem which is generally intractable in real time. The presented paper deals with this issue making use of the famous dynamical programming idea and reducing the dimensionality of the original optimization problem. The outline of the paper is as follows. The MPC problem is considered for a nonlinear discrete-time system with state and control constraint sets and quadratic cost functional. The assumptions worth noting are, firstly, Lipschitz continuity of the right hand side of the system and, secondly, continuity in some sense of the admissible control set with respect to the current state of the system. Employing these properties we are able to prove Lipschitz continuity of the optimal cost value as a function of the initial state of the system. This result provides us with the opportunity to approximate the minimal value of the last several summands of the cost functional as a function of the intermediate system state by means of precalculating it for a set of state values before the controller is launched. The summands mentioned may be then excluded from the optimization reducing the dimensionality of the problem. The results are followed by the discussion of their limitations and an example of application. It is shown that the simpler the resulting problem, the less smooth it becomes, thus making it necessary to use more data points for the approximation. Another observation is that the smoothness of the problem is decreasing far from the set point. The theorems proven in the paper give the reasoning behind these facts but the ways to deal with them are due to further research. Bibliogr. 13. Il. 2.
Keywords: optimal control, suboptimal control, optimal cost value continuity, numerical optimization, approximate optimization, real-time control, model predictive control, MPC.
@article{VSPUI_2014_3_a13,
     author = {A. A. Ponomarev},
     title = {Suboptimal control construction for the model predictive controller},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {141--153},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a13/}
}
TY  - JOUR
AU  - A. A. Ponomarev
TI  - Suboptimal control construction for the model predictive controller
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 141
EP  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a13/
LA  - ru
ID  - VSPUI_2014_3_a13
ER  - 
%0 Journal Article
%A A. A. Ponomarev
%T Suboptimal control construction for the model predictive controller
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 141-153
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a13/
%G ru
%F VSPUI_2014_3_a13
A. A. Ponomarev. Suboptimal control construction for the model predictive controller. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 141-153. http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a13/

[1] Richalet J., Rault A., Testud J. L., Papon J., “Model predictive heuristic control: applications to industrial processes”, Automatica, 14:5 (1978), 413–428 | DOI

[2] Qin S. J., Badgwell T. A., “A survey of industrial model predictive control technology”, Control Engineering Practice, 11:7 (2003), 733–764 | DOI

[3] Veremej E. I., Sotnikova M. V., “Plasma stabilization on the base of model predictive control with the linear closed-loop system stability”, Vestnik St. Petersburg University, ser. 10: Applied mathematics, computer science, control processes, 2011, no. 1, 116–133

[4] Sotnikova M., “Ship dynamics control using predictive models”, Proc. of the 9th IFAC Conference on Manoeuvring and Control of Marine Craft, MCMC 2012 (Arenzano, Italy, September 19–21, 2012), 250–255

[5] Sotnikova M. V., “The problem of stability in model predictive control”, Vestn. Voronezh. gos. teh. un-ta, 8:1 (2012), 72–79

[6] Mayne D. Q., Rawlings J. B., Rao C. V., Scokaert P. O. M., “Constrained model predictive control: Stability and optimality”, Automatica, 36:6 (2000), 789–814 | DOI | MR | Zbl

[7] Sotnikova M. V., “Robust model predictive control algorithm synthesis”, Sistemy upravlenija i informacionnye tehnologii, 50:4 (2012), 99–102

[8] Magni L., Raimondo D. M., Allgöwer F. (Eds.), Nonlinear model predictive control: towards new challenging applications, Springer, Berlin, 2009, 572 pp. | MR | Zbl

[9] Zubov V. I., Lectures on control theory, Nauka, M., 1975, 496 pp. | MR | Zbl

[10] Balashevich N. V., Gabasov R., Kirillova F. M., “Numerical methods of programmed and positional optimization of linear control systems”, Zhurn. vychisl. matematiki i matem. fiziki, 40:6 (2000), 838–859 | MR | Zbl

[11] Scokaert P. O. M., Mayne D. Q., Rawlings J. B., “Suboptimal model predictive control (feasibility implies stability)”, IEEE Transactions on Automatic Control, 44:3 (1999), 648–654 | DOI | MR | Zbl

[12] Gabasov R., Kirillova F. M., Ruzhitskaya E. A., “Damping and stabilization of a pendulum under large initial disturbances”, Izv. RAN. Teoriya i sistemy upravleniya, 2001, no. 1, 29–38 | MR | Zbl

[13] Maciejowski J. M., Predictive control with constraints, Prentice Hall, London, 2002, 331 pp.