@article{VSPUI_2014_3_a12,
author = {I. P. Medennikov},
title = {Direct {Lyapunov} approach to the stability analysis of differential-difference systems with linearly increasing time delay},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {125--140},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a12/}
}
TY - JOUR AU - I. P. Medennikov TI - Direct Lyapunov approach to the stability analysis of differential-difference systems with linearly increasing time delay JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 125 EP - 140 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a12/ LA - ru ID - VSPUI_2014_3_a12 ER -
%0 Journal Article %A I. P. Medennikov %T Direct Lyapunov approach to the stability analysis of differential-difference systems with linearly increasing time delay %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 125-140 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a12/ %G ru %F VSPUI_2014_3_a12
I. P. Medennikov. Direct Lyapunov approach to the stability analysis of differential-difference systems with linearly increasing time delay. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 125-140. http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a12/
[1] Bellman R., Cooke K., Differential-difference equations, Russian translation, Mir, M., 1967 | MR | Zbl
[2] Valeev K. G., “Linear differential equations with linear time-delay”, Siberian math. journal, 5:2 (1964), 214–218 | MR
[3] Grebenshchikov B. G., “Methods for studying stability of systems with linear delay”, Siberian math. journal, 42:1 (2001), 41–51 | MR
[4] Grebenshchikov B. G., Lozhnikov A. B., “On the stabilization of a delayed system”, Avtomatika i Telemekhanika, 2011, no. 1, 13–26
[5] Medennikov I. P., “Lyapunov–Krasovskii approach to the stability analysis of differential-difference systems with a linear increasing time-delay”, Transactions of 44th Control Processes and Stability Conference, eds. N. V. Smirnov, T. E. Smirnova, St-Petersburg, Russia, 2013, 37–43
[6] Zhabko A. P., Medvedeva I. V., “Algebraic approach to the stability analysis of differential-difference systems”, Vestnik St. Petersburg University, ser. 10: Applied mathematics, computer science, control processes, 2011, no. 1, 9–20
[7] Krasovskii N. N., “On the application of the second Lyapunov method for equations with time delays”, Applied mathematics and mechanics, 20 (1956), 315–327 | MR
[8] Kharitonov V. L., Zhabko A. P., “Lyapunov–Krasovskii approach to the robust stability analysis of time delay systems”, Automatica, 39 (2003), 15–20 ; 200–209 | DOI | MR | Zbl
[9] Kharitonov V. L., “Lyapunov functionals with a given derivative”, Vestnik St. Petersburg University, ser. 10: Applied mathematics, computer science, control processes, 2005, no. 1–2, 110–117; 200–209
[10] Laktionov A. A., Zhabko A. P., “The method of difference transformations for differential systems with linear time-delay”, Linear Time Delay Systems (LTDS), Grenoble, France, 1998, 201–205
[11] Zhabko A. P., Laktionov A. A., “The method of difference transformations for differential equations with linear time-delay”, The problems of mechancs and control processes, 19, 2003, 45–54