Properties of control switching points for non-linear fourth order system
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 118-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of development of controlled object from the preset initial position to origin of coordinates with the preset value of course angle in a final point for the minimum time is reviewed in the paper. Object movement is described by a nonlinear system of ordinary differential equations of the fourth degree. It should be noted that similar systems were repeatedly analyzed in the past. A game approach, so-called “homicidal shauffeur” game was most commonly used. In the proposed paper an object movement research is carried out using a “classical” method of optimum control theory–a maximum principle. Quite detailed analysis of difference of the considered problem statement apart from studied and solved in the past is carried out. As a number of switching points of optimum control for initial task is unknown, some properties of acceptable trajectories of movement of controlled object, meeting necessary optimality condition-a maximum principle, are studied in the paper. It is assumed that optimum control and, therefore, an optimum trajectory of movement exists, and as that for transfer of object to the origin of coordinates with the preset value of course angle from any initial point not less than two switching of course angle control are required. A maximum quantity of switching points for speed control of object is further on a consistency open interval of this control. All reasoning is performed on the assumption that the control of course angle and speed control aren’t equal to zero. Results of the conducted analysis are presented as the respective theorem. Bibliogr. 10.
Keywords: maximum principle, the Hamiltonian, conjugate system, time optimal performance, course angle.
@article{VSPUI_2014_3_a11,
     author = {M. S. Zolotikh and I. A. Moiseev},
     title = {Properties of control switching points for non-linear fourth order system},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {118--124},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a11/}
}
TY  - JOUR
AU  - M. S. Zolotikh
AU  - I. A. Moiseev
TI  - Properties of control switching points for non-linear fourth order system
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 118
EP  - 124
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a11/
LA  - ru
ID  - VSPUI_2014_3_a11
ER  - 
%0 Journal Article
%A M. S. Zolotikh
%A I. A. Moiseev
%T Properties of control switching points for non-linear fourth order system
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 118-124
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a11/
%G ru
%F VSPUI_2014_3_a11
M. S. Zolotikh; I. A. Moiseev. Properties of control switching points for non-linear fourth order system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 118-124. http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a11/

[1] Patsko V. S., Pyatko C. G., Kumkov S. I., Fedotov A. A., Assessment of the motion of an aircraft on the basis of informational sets in case of incomplete measurements of coordinates, Scientific reports, Civil aviation Academy, St. Petesburg; Institute of mathematics and mechanics Ural branch of the Russian Academy of Sciences, St. Petersburg–Ekaterinburg, 1999, 70 pp.

[2] Patsko V. S., Turova V. L., “Homicidal shauffeur game and its modifications”, Vestnik Udmurt. un-ta, 2008, no. 2, 105–110

[3] Rozov N. K., “Formulation of the problem of optimal control”, Mathematics at the service of engineer. Foundations of optimal control theory, coll. of articles, Znanie, M., 1973, 6–27

[4] Berdyshev Y. I., “Synthesis of the time-optimal control for one nonlinear fourth order system”, Applied mathematics and mechanics, 39:6 (1975), 985–994 | MR

[5] Berdyshev Y. I., Synthesis of the time-optimal control the motion of a material point in an environment with resistance, Abstract of PhD thesis, Ural scientific center, Sverdlovsk, 1978, 18 pp.

[6] Isaacs R., Differential games, Mir, M., 1967, 384 pp. | MR

[7] Isaacs R., Games of pursuit, scientific report of the RAND Corporation, RAND Corporation, Santa Monica, 1951

[8] Reeds J. A., Shepp L. A., “Optimal paths for a car that goes both forwards and backwards”, Pacific J. Math., 145:2 (1990), 367–393 | DOI | MR

[9] Patsko V. S., Turova V. L., “Level sets of the value function in differential games with the homicidal chauffeur dynamics”, Game Theory and Applications, 12 (2007), 123–152 | MR

[10] Pontryagin L. S., Boltyansky V. G., Gamkrelidze R. V., Mishchenko E. F., Mathematical theory of optimal processes, Nauka, M., 1969, 384 pp. | Zbl