Implementation of local triangulation enlargement algorithm
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 111-117

Voir la notice de l'article provenant de la source Math-Net.Ru

Paper provides method, allows to process local triangulation enlargement on double-dimension surface, while keeping it’s regularity. Proposed algorithm, building triangulation with local enlargement on provided source triangulation. Program, allowing to replase Kurant’s approximation on source triangulation replace with Kurant’s approximation on enlarged with taking into account local singularities triangulation was implemented. Bibliogr. 3. Il. 2. Table 1.
Mots-clés : courant approximation, triangulation, local enlargement, incidence table.
Keywords: surface approximation, 3d-graphic
@article{VSPUI_2014_3_a10,
     author = {L. M. Romanovskiy},
     title = {Implementation of local triangulation enlargement algorithm},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {111--117},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a10/}
}
TY  - JOUR
AU  - L. M. Romanovskiy
TI  - Implementation of local triangulation enlargement algorithm
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 111
EP  - 117
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a10/
LA  - ru
ID  - VSPUI_2014_3_a10
ER  - 
%0 Journal Article
%A L. M. Romanovskiy
%T Implementation of local triangulation enlargement algorithm
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 111-117
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a10/
%G ru
%F VSPUI_2014_3_a10
L. M. Romanovskiy. Implementation of local triangulation enlargement algorithm. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2014), pp. 111-117. http://geodesic.mathdoc.fr/item/VSPUI_2014_3_a10/