Mots-clés : chaos
@article{VSPUI_2014_2_a9,
author = {A. Wittig and M. Berz},
title = {High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {93--110},
year = {2014},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a9/}
}
TY - JOUR AU - A. Wittig AU - M. Berz TI - High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 93 EP - 110 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a9/ LA - en ID - VSPUI_2014_2_a9 ER -
%0 Journal Article %A A. Wittig %A M. Berz %T High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 93-110 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a9/ %G en %F VSPUI_2014_2_a9
A. Wittig; M. Berz. High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2014), pp. 93-110. http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a9/
[1] Berz M., “From Taylor series to Taylor models”, AIP CP, 405 (1997), 1–20
[2] Makino K., Berz M., “COSY INFINITY version 9”, Nuclear Instruments and Methods, 558 (2006), 346–350 | DOI
[3] Schauder J., “Der Fixpunktsatz in Funktionsräumen”, Studia Mathematica, 2 (1930), 171–180 | Zbl
[4] Banach S., “Sur les opérations dans les ensembles abstraits et leurs application aux équations intégrales”, Fund. Math., 3 (1922), 7–33
[5] Bronstein I. N., Semendjajew K. A., Musiol G., Mühlig H., Taschenbuch der Mathematik, 5th edition, Verlag Harri Deutsch, 2001, 269 ; 652 | MR
[6] Makino K., Berz M., “Range bounding for global optimization with Taylor models”, Transactions on Computers, 4:11 (2005), 1611–1618
[7] Makino K., Berz M., “Rigorous global optimization for parameter selection”, Vestnik S-Peterb. un-ta, ser. 10: Prikladnaya matematika, informatika, processy upravleniya, 2014, no. 2, 61–71
[8] Makino K., Berz M., “Efficient control of the dependency problem based on Taylor model methods”, Reliable Computing, 5:1 (1999), 3–12 | DOI | MR | Zbl
[9] Berz M., Hoffstätter G., “Computation and application of Taylor polynomials with interval remainder bounds”, Reliable Computing, 4:1 (1998), 83–97 | DOI | MR | Zbl
[10] IEEE standard for binary floating-point arithmetic, technical Report IEEE Std 754-1985, The Institute of Electrical and Electronics Engineers, 1987
[11] Snopok P., Optimization of Accelerator Parameters Using Normal Form Methods on High-Order Transfer Maps, PhD thesis, Michigan State University, East Lansing, Michigan, USA, 2007 http://bt.pa.msu.edu/snopokphd
[12] Berz M., “Differential algebraic formulation of normal form theory”, Proc. Nonlinear Effects in Accelerators, eds. M. Berz, S. Martin, K. Ziegler, IOP Publishing, London, 1992, 77–86
[13] Berz M., “High-order computation and normal form analysis of repetitive systems”, Physics of Particle Accelerators, 249, ed. M. Month, American Institute of Physics, New York, 1991, 456–489
[14] Wittig A., Berz M., Grote J., Makino K., Newhouse S., “Rigorous and accurate enclosure of invariant manifolds on surfaces”, Regular and Chaotic Dynamics, 15 (2010), 107–126 | DOI | MR | Zbl
[15] Grote J., Berz M., Makino K., Newhouse S., “Taylor model-based enclosure of invariant manifolds for planar diffeomorphisms and applications”, Proc. Applied Mathematics and Mechanics, 7 (2008), 1022907–1022908 | DOI | MR
[16] Grote J., High-Order Computer-Assisted Estimates of Topological Entropy, PhD thesis, Michigan State University, East Lansing, Michigan, USA, 2008 http://bt.pa.msu.edu/grotephd | Zbl