High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2014), pp. 93-110
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we present an algorithm for a verified global fixed point finder. More specifically, a method is described to automatically identify and classify regions of the search space which are guaranteed to either contain none, precisely one, or one or more fixed points, as well as regions that may or may not contain fixed points. The fixed point finder is implemented with Taylor models in COSY INFINITY, allowing for very efficient identification of fixed points even in numerically complicated systems with high dependency and strong cancellation. We then apply the fixed point finder to find higher order periodic points in a transfer map taken from the Tevatron accelerator. The results are compared to predictions made from tune shifts computed using normal form theory. A high order approximation to the stable and unstable manifolds of a set of hyperbolic periodic points is computed and shown. Bibliogr. 16. Il. 4. Table 1.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Taylor model, fixed points, manifolds.
Mots-clés : chaos
                    
                  
                
                
                Mots-clés : chaos
@article{VSPUI_2014_2_a9,
     author = {A. Wittig and M. Berz},
     title = {High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {93--110},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a9/}
}
                      
                      
                    TY - JOUR AU - A. Wittig AU - M. Berz TI - High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 93 EP - 110 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a9/ LA - en ID - VSPUI_2014_2_a9 ER -
%0 Journal Article %A A. Wittig %A M. Berz %T High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 93-110 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a9/ %G en %F VSPUI_2014_2_a9
A. Wittig; M. Berz. High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2014), pp. 93-110. http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a9/
