High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2014), pp. 93-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we present an algorithm for a verified global fixed point finder. More specifically, a method is described to automatically identify and classify regions of the search space which are guaranteed to either contain none, precisely one, or one or more fixed points, as well as regions that may or may not contain fixed points. The fixed point finder is implemented with Taylor models in COSY INFINITY, allowing for very efficient identification of fixed points even in numerically complicated systems with high dependency and strong cancellation. We then apply the fixed point finder to find higher order periodic points in a transfer map taken from the Tevatron accelerator. The results are compared to predictions made from tune shifts computed using normal form theory. A high order approximation to the stable and unstable manifolds of a set of hyperbolic periodic points is computed and shown. Bibliogr. 16. Il. 4. Table 1.
Keywords: Taylor model, fixed points, manifolds.
Mots-clés : chaos
@article{VSPUI_2014_2_a9,
     author = {A. Wittig and M. Berz},
     title = {High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {93--110},
     year = {2014},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a9/}
}
TY  - JOUR
AU  - A. Wittig
AU  - M. Berz
TI  - High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 93
EP  - 110
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a9/
LA  - en
ID  - VSPUI_2014_2_a9
ER  - 
%0 Journal Article
%A A. Wittig
%A M. Berz
%T High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 93-110
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a9/
%G en
%F VSPUI_2014_2_a9
A. Wittig; M. Berz. High period fixed points, stable and unstable manifolds, and chaos in accelerator transfer maps. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2014), pp. 93-110. http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a9/

[1] Berz M., “From Taylor series to Taylor models”, AIP CP, 405 (1997), 1–20

[2] Makino K., Berz M., “COSY INFINITY version 9”, Nuclear Instruments and Methods, 558 (2006), 346–350 | DOI

[3] Schauder J., “Der Fixpunktsatz in Funktionsräumen”, Studia Mathematica, 2 (1930), 171–180 | Zbl

[4] Banach S., “Sur les opérations dans les ensembles abstraits et leurs application aux équations intégrales”, Fund. Math., 3 (1922), 7–33

[5] Bronstein I. N., Semendjajew K. A., Musiol G., Mühlig H., Taschenbuch der Mathematik, 5th edition, Verlag Harri Deutsch, 2001, 269 ; 652 | MR

[6] Makino K., Berz M., “Range bounding for global optimization with Taylor models”, Transactions on Computers, 4:11 (2005), 1611–1618

[7] Makino K., Berz M., “Rigorous global optimization for parameter selection”, Vestnik S-Peterb. un-ta, ser. 10: Prikladnaya matematika, informatika, processy upravleniya, 2014, no. 2, 61–71

[8] Makino K., Berz M., “Efficient control of the dependency problem based on Taylor model methods”, Reliable Computing, 5:1 (1999), 3–12 | DOI | MR | Zbl

[9] Berz M., Hoffstätter G., “Computation and application of Taylor polynomials with interval remainder bounds”, Reliable Computing, 4:1 (1998), 83–97 | DOI | MR | Zbl

[10] IEEE standard for binary floating-point arithmetic, technical Report IEEE Std 754-1985, The Institute of Electrical and Electronics Engineers, 1987

[11] Snopok P., Optimization of Accelerator Parameters Using Normal Form Methods on High-Order Transfer Maps, PhD thesis, Michigan State University, East Lansing, Michigan, USA, 2007 http://bt.pa.msu.edu/snopokphd

[12] Berz M., “Differential algebraic formulation of normal form theory”, Proc. Nonlinear Effects in Accelerators, eds. M. Berz, S. Martin, K. Ziegler, IOP Publishing, London, 1992, 77–86

[13] Berz M., “High-order computation and normal form analysis of repetitive systems”, Physics of Particle Accelerators, 249, ed. M. Month, American Institute of Physics, New York, 1991, 456–489

[14] Wittig A., Berz M., Grote J., Makino K., Newhouse S., “Rigorous and accurate enclosure of invariant manifolds on surfaces”, Regular and Chaotic Dynamics, 15 (2010), 107–126 | DOI | MR | Zbl

[15] Grote J., Berz M., Makino K., Newhouse S., “Taylor model-based enclosure of invariant manifolds for planar diffeomorphisms and applications”, Proc. Applied Mathematics and Mechanics, 7 (2008), 1022907–1022908 | DOI | MR

[16] Grote J., High-Order Computer-Assisted Estimates of Topological Entropy, PhD thesis, Michigan State University, East Lansing, Michigan, USA, 2008 http://bt.pa.msu.edu/grotephd | Zbl