Viscosity solutions and programmed iteration method for Isaacs equation
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2014), pp. 84-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To solve zero-sum differential games Isaacs derived PDE of Hamilton–Jacobi type for value function. However, in many differential games the value function is not smooth. The theory of viscosity solutions overcomes non-smoothness of the value function by introducing generalized solutions of PDE. Programmed iteration method considers functional equation for the value function which is called generalized Isaacs–Bellman equation. In the paper connection between the theory of viscosity solutions and programmed iteration method is studied. It turns out that successive approximations utilized in programmed iteration method for finding solutions of generalized Isaacs–Bellman equation and any fixed point of value operators are corresponding viscosity super or sub-solutions of Isaacs equation. Bibliogr. 24.
Keywords: zero-sum differential games, viscosity solutions, Isaacs equation, programmed iteration method, value operators, value of differential game.
@article{VSPUI_2014_2_a8,
     author = {F. F. Nikitin},
     title = {Viscosity solutions and programmed iteration method for {Isaacs} equation},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {84--92},
     year = {2014},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a8/}
}
TY  - JOUR
AU  - F. F. Nikitin
TI  - Viscosity solutions and programmed iteration method for Isaacs equation
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 84
EP  - 92
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a8/
LA  - en
ID  - VSPUI_2014_2_a8
ER  - 
%0 Journal Article
%A F. F. Nikitin
%T Viscosity solutions and programmed iteration method for Isaacs equation
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 84-92
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a8/
%G en
%F VSPUI_2014_2_a8
F. F. Nikitin. Viscosity solutions and programmed iteration method for Isaacs equation. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2014), pp. 84-92. http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a8/

[1] Isaacs R., Differential games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization, John Wiley and Sons, Inc., New York, 1965, 384 pp. | MR | Zbl

[2] Pontryagin L. S., “On the theory of differential games”, Russian Math. Surveys, 21 (1966), 193–246 | DOI | MR

[3] Lewin J., Differential games, Springer, London, 1994, 242 pp. | MR

[4] Elliot R. J., Kalton N. J., “Values in differential games”, Bull. Amer. Math. Soc., 78 (1972), 427–431 | DOI | MR | Zbl

[5] Fleming W. H., “The convergence problem for differential game”, J. Math. Anal. Appl., 3 (1961), 102–116 | DOI | MR | Zbl

[6] Friedman A., Differential games, Wiley, New York, 1971, 350 pp. | MR | Zbl

[7] Roxin E., “Axiomatic approach to differential games”, J. Optim. Theory Appl., 3 (1969), 153–163 | DOI | MR | Zbl

[8] Varaiya P. P., “On the existence of solutions to a differential game”, SIAM J. Control Optim., 5 (1967), 153–162 | DOI | MR | Zbl

[9] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, London, 2011, 532 pp. | MR

[10] Subbotin A. I., “A generalization of the basic equation of the theory of differential games”, Dokl. Akad. Nauk, 22 (1980), 358–362 | Zbl

[11] Subbotin A. I., Generalized solutions of first order PDEs: The Dynamic Optimization Perspectives, Birkháuser, Boston, 1995, 312 pp. | MR

[12] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl

[13] Evans L. C., Souganidis P. E., “Differential games and representation formulas for solutions of Hamilton–Jacobi equations”, Indiana Univ. Math. J., 33 (1984), 773–797 | DOI | MR | Zbl

[14] Subbotin A. I., “On a property of the subdifferential”, Mat. Sb., 74 (1993), 63–78 | DOI | MR | Zbl

[15] Chentsov A. G., “The structure of an approach problem”, Dokl. Akad. Nauk, 224 (1975), 1272–1275 | MR | Zbl

[16] Chentsov A. G., “On differential game of approach”, Mat. Sb., 99 (1976), 394–420 | MR | Zbl

[17] Chistyakov S. V., “On solutions for game problems of pursuit”, Prikl. Mat. Mekh., 41 (1977), 825–832 | MR

[18] Chistyakov S. V., Petrosyan L. A., “On one approach for solutions of games of pursuit”, Vestnik Lening. University. Ser. 1: Mathematica, mechanica, astronomia, 1 (1977), 77–82 | MR | Zbl

[19] Chentsov A. G., Subbotin A. I., “An iterative procedure for constructing minimax and viscosity solutions to the Hamilton–Jacobi equations and its generalization”, Proc. Steklov Inst. Math., 224, 1999, 286–309 | MR | Zbl

[20] Coddington E., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955, 474 pp. | MR | Zbl

[21] Chistyakov S. V., “Value operators in the theory of differential games”, Izv. IMI Udm. State Univ., 37 (2006), 169–172

[22] Nikitin F. F., Chistyakov S. V., “Existence and uniqueness theorem for a generalized Isaacs–Bellman equation”, Differential equations, 43 (2007), 757–766 | DOI | MR | Zbl

[23] Chistyakov S. V., “Programmed iterations and universal $\epsilon$-optimal strategies in positional differential game”, Dokl. Akad. Nauk, 319 (1991), 1333–1335 | MR | Zbl

[24] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Courier Dover Publications, New York, 1999, 288 pp.