@article{VSPUI_2014_2_a8,
author = {F. F. Nikitin},
title = {Viscosity solutions and programmed iteration method for {Isaacs} equation},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {84--92},
year = {2014},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a8/}
}
TY - JOUR AU - F. F. Nikitin TI - Viscosity solutions and programmed iteration method for Isaacs equation JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 84 EP - 92 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a8/ LA - en ID - VSPUI_2014_2_a8 ER -
%0 Journal Article %A F. F. Nikitin %T Viscosity solutions and programmed iteration method for Isaacs equation %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 84-92 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a8/ %G en %F VSPUI_2014_2_a8
F. F. Nikitin. Viscosity solutions and programmed iteration method for Isaacs equation. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2014), pp. 84-92. http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a8/
[1] Isaacs R., Differential games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization, John Wiley and Sons, Inc., New York, 1965, 384 pp. | MR | Zbl
[2] Pontryagin L. S., “On the theory of differential games”, Russian Math. Surveys, 21 (1966), 193–246 | DOI | MR
[3] Lewin J., Differential games, Springer, London, 1994, 242 pp. | MR
[4] Elliot R. J., Kalton N. J., “Values in differential games”, Bull. Amer. Math. Soc., 78 (1972), 427–431 | DOI | MR | Zbl
[5] Fleming W. H., “The convergence problem for differential game”, J. Math. Anal. Appl., 3 (1961), 102–116 | DOI | MR | Zbl
[6] Friedman A., Differential games, Wiley, New York, 1971, 350 pp. | MR | Zbl
[7] Roxin E., “Axiomatic approach to differential games”, J. Optim. Theory Appl., 3 (1969), 153–163 | DOI | MR | Zbl
[8] Varaiya P. P., “On the existence of solutions to a differential game”, SIAM J. Control Optim., 5 (1967), 153–162 | DOI | MR | Zbl
[9] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, London, 2011, 532 pp. | MR
[10] Subbotin A. I., “A generalization of the basic equation of the theory of differential games”, Dokl. Akad. Nauk, 22 (1980), 358–362 | Zbl
[11] Subbotin A. I., Generalized solutions of first order PDEs: The Dynamic Optimization Perspectives, Birkháuser, Boston, 1995, 312 pp. | MR
[12] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl
[13] Evans L. C., Souganidis P. E., “Differential games and representation formulas for solutions of Hamilton–Jacobi equations”, Indiana Univ. Math. J., 33 (1984), 773–797 | DOI | MR | Zbl
[14] Subbotin A. I., “On a property of the subdifferential”, Mat. Sb., 74 (1993), 63–78 | DOI | MR | Zbl
[15] Chentsov A. G., “The structure of an approach problem”, Dokl. Akad. Nauk, 224 (1975), 1272–1275 | MR | Zbl
[16] Chentsov A. G., “On differential game of approach”, Mat. Sb., 99 (1976), 394–420 | MR | Zbl
[17] Chistyakov S. V., “On solutions for game problems of pursuit”, Prikl. Mat. Mekh., 41 (1977), 825–832 | MR
[18] Chistyakov S. V., Petrosyan L. A., “On one approach for solutions of games of pursuit”, Vestnik Lening. University. Ser. 1: Mathematica, mechanica, astronomia, 1 (1977), 77–82 | MR | Zbl
[19] Chentsov A. G., Subbotin A. I., “An iterative procedure for constructing minimax and viscosity solutions to the Hamilton–Jacobi equations and its generalization”, Proc. Steklov Inst. Math., 224, 1999, 286–309 | MR | Zbl
[20] Coddington E., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955, 474 pp. | MR | Zbl
[21] Chistyakov S. V., “Value operators in the theory of differential games”, Izv. IMI Udm. State Univ., 37 (2006), 169–172
[22] Nikitin F. F., Chistyakov S. V., “Existence and uniqueness theorem for a generalized Isaacs–Bellman equation”, Differential equations, 43 (2007), 757–766 | DOI | MR | Zbl
[23] Chistyakov S. V., “Programmed iterations and universal $\epsilon$-optimal strategies in positional differential game”, Dokl. Akad. Nauk, 319 (1991), 1333–1335 | MR | Zbl
[24] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Courier Dover Publications, New York, 1999, 288 pp.