@article{VSPUI_2014_2_a5,
author = {A. N. Ivanov},
title = {An integrated development environment for spin-orbit motion simulation of charged particles},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {49--60},
year = {2014},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a5/}
}
TY - JOUR AU - A. N. Ivanov TI - An integrated development environment for spin-orbit motion simulation of charged particles JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 49 EP - 60 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a5/ LA - ru ID - VSPUI_2014_2_a5 ER -
%0 Journal Article %A A. N. Ivanov %T An integrated development environment for spin-orbit motion simulation of charged particles %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 49-60 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a5/ %G ru %F VSPUI_2014_2_a5
A. N. Ivanov. An integrated development environment for spin-orbit motion simulation of charged particles. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2014), pp. 49-60. http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a5/
[1] COSY Infinity http://www.bt.pa.msu.edu/index_cosy.htm
[2] MAD — Methodical Accelerator Design http://mad.web.cern.ch/mad
[3] Andrianov S. N., Dynamical modeling of control for particle beam Systems, Izd-vo S.-Peterb. un-ta, St.-Petersburg, 2004, 376 pp.
[4] Ivanov A., Andrianov S., “Matrix formalism for long-term evolution of charged particle and spin dynamics in electrostatic fields”, Proc. of ICAP 2012 (Rostock, Germany, 2012), 187–189
[5] Szilgyi M., Electron and ion optics, Per. s angl. I. M. Ahmedzhanova e. a., Mir, M., 1990, 639 pp.
[6] Balandin V. V., Golubeva N. I., Hamiltonian methods for the study of polarized proton beam dynamics in accelerators and storage rings, arXiv: 9903032
[7] Kanakov O. I., Milchenko N. A., “Symplectic methods for Hamiltonian systems integration”, Proc. of XII conf. on radiophysics, Nizhniy Novgorod, 2008, 87–88
[8] Ivanov A. N., “Numerical implementation of the matrix formalism”, Proc. of 43th conf. on control process and stability, eds. A. S. Eryomin, N. V. Smirnov, Izdat. Dom S.-Peterb. un-ta, St.-Petersburg, 2012, 347–353
[9] Oevel W., Sofroniou M. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.5060
[10] Gilani F. http://msdn.microsoft.com/en-us/magazine/cc163995.aspx
[11] Fasma D., Brigida P., Energy-Preserving Runge–Kutta methods, , 2010 http://www.dm.uniba.it/d̃elbuono/sds10/LecturePaceSDS10.pdf
[12] Aubry A., Chartier P. http://www.irisa.fr/ipso/fichiers/hambit.pdf
[13] Hairer E., Norsett S. P., Wanner G., Solving ordinary differential equations. Nonstiff problems, Per. s angl. I. A. Kul'chickoj, S. S. Filippova, Mir, M., 1990, 512 pp.