@article{VSPUI_2014_2_a11,
author = {A. Yu. Krilatov},
title = {Optimal strategies for traffic flow management on the transportation network of parallel links},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {120--129},
year = {2014},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a11/}
}
TY - JOUR AU - A. Yu. Krilatov TI - Optimal strategies for traffic flow management on the transportation network of parallel links JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 120 EP - 129 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a11/ LA - ru ID - VSPUI_2014_2_a11 ER -
%0 Journal Article %A A. Yu. Krilatov %T Optimal strategies for traffic flow management on the transportation network of parallel links %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 120-129 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a11/ %G ru %F VSPUI_2014_2_a11
A. Yu. Krilatov. Optimal strategies for traffic flow management on the transportation network of parallel links. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2014), pp. 120-129. http://geodesic.mathdoc.fr/item/VSPUI_2014_2_a11/
[1] Wardrop J. G., “Some theoretical aspects of road traffic research”, Proc. Institution of Civil Engineers, 2 (1952), 325–378
[2] Beckmann M. J., McGuire C. B., Winsten C. B., Studies in the Economics of Transportation, Yale University Press, New Haven, CT, 1956, 359 pp.
[3] Sheffi Y., Urban transportation networks: equilibrium analysis with mathematical programming methods, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1985, 416 pp.
[4] Yang H., Huang H.-J., “The multi-class, multi-criteria traffic network equilibrium and systems optimum problem”, Transportation Research. Pt B, 38 (2004), 1–15 | DOI
[5] V. A. Drujinina, I. A. Volkova (eds.), Introduction to mathematical modeling of traffic flows, Moscow Institute of Physics and Technology, M., 2010, 360 pp.
[6] Aliev A. S., Strelnikov A. I., Shvetsov V. I., Shershevskii Yu. Z., “Modeling of the city transport flows as applied to the Moscow agglomeration”, Avtomatika i telemehanika, 2005, no. 11, 113–125 | MR
[7] Tong C. O., Wong S. C., “A predictive dynamic traffic assignment model in congested capacity-constrained road networks”, Transportation Research. Pt B, 34 (2000), 625–644 | DOI
[8] Korilis Y. A., Lazar A. A., Orda A., “Architecting noncooperative networks”, IEEE Journal on selected areas in communications, 13:7 (1995), 1241–1251 | DOI
[9] Zakharov V. V., Krilatov A. Yu., “System optimum of traffic flows in megapolis and strategies of navigation providers: theoretic game approach”, Matematicheskaya teoriya igr i eyo prilozheniya, 4:4 (2012), 23–44
[10] Zakharov V., Krylatov A., Ivanov D., “Equilibrium traffic flow assignment in case of two navigation providers”, Collaborative Systems for Reindustrialization, Proc. of the 14thIFIP Conference on Virtual Enterprises PRO-VE 2013, Springer, Dresden, 2013, 156–163 | DOI
[11] Shvetsov V. I., “Mathematical modeling of traffic flows”, Avtomatika i telemehanika, 2003, no. 11, 3–46
[12] Frank M., Wolfe P., “An algorithm for quadratic programming”, Naval Research Logistics Quarterly, 3 (1956), 95–110 | DOI | MR
[13] Shvetsov V. I., “Algorithms for distributing traffic flows”, Avtomatika i telemehanika, 2009, no. 10, 148–157
[14] Daganzo C. F., “The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory”, Transpn. Res. B, 28 (1994), 269–287 | DOI
[15] Korilis Y. A., Lazar A. A., Orda A., “Avoiding the Braess paradox in non-cooperative networks”, J. Appl. Prob., 36 (1999), 211–222 | DOI | MR | Zbl
[16] Horowitz A. J., Delay/Volume Relations for Travel Forecasting Based upon the 1985 Highway Capacity Manual, Department of Civil Engineering and Mechanics University of Wisconsin-Milwaukee, Milwaukee, 1991, 87 pp.