Mots-clés : clique
@article{VSPUI_2014_1_a9,
author = {E. V. Prosolupov},
title = {On sufficient conditions for equality of the independence number and the clique cover number for a class of graphs},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {90--103},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a9/}
}
TY - JOUR AU - E. V. Prosolupov TI - On sufficient conditions for equality of the independence number and the clique cover number for a class of graphs JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 90 EP - 103 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a9/ LA - ru ID - VSPUI_2014_1_a9 ER -
%0 Journal Article %A E. V. Prosolupov %T On sufficient conditions for equality of the independence number and the clique cover number for a class of graphs %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 90-103 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a9/ %G ru %F VSPUI_2014_1_a9
E. V. Prosolupov. On sufficient conditions for equality of the independence number and the clique cover number for a class of graphs. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2014), pp. 90-103. http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a9/
[1] Barioli F., Barrett W., Butler S., Cioabă S. M., Cvetković D., Fallat S. M., Godsil C., Haemers W., Hogben L., Mikkelson R., Narayan S., Pryporova O., Sciriha I., So W., Stevanović D., van der Holst H., Meulen K. V., Wehe A. W., “Zero forcing sets and the minimum rank of graphs”, Linear Algebra Appl., 428 (2008), 1628–1648 | DOI | MR | Zbl
[2] Berman A., Friedland S., Hogben L., Rothblum U. G., Shader B., “Minimum Rank of Matrices Described by a Graph or Pattern over the Rational, Real and Complex Numbers”, Electron. J. Combinat., 15 (2008), R25, 19 pp. | MR | Zbl
[3] Liang-Hao Huang, Gerard J. Chang, Hong-Gwa Yeh, “On minimum rank and zero forcing sets of a graph”, Linear Algebra Appl., 432 (2010), 2961–2973 | DOI | MR | Zbl
[4] Liang-Hao Huang, Gerard J. Chang, Hong-Gwa Yeh, “A note on universally optimal matrices and field independence of the minimum rank of a graph”, Linear Algebra Appl., 433 (2010), 585–594 | DOI | MR | Zbl
[5] Fallat S. M., Hogben L., “The minimum rank of symmetric matrices described by a graph: a survey”, Linear Algebra Appl., 426 (2007), 558–582 | DOI | MR | Zbl
[6] Hogben L., “Minimum rank problems”, Linear Algebra Appl., 432 (2010), 1961–1974 | DOI | MR | Zbl
[7] Webpage for the 2006 American Institute of Mathematics workshop http://aimath.org/pastworkshops/matrixspectrum.html
[8] Briët J., Buhrman H., Gijswijt D., “Violating the Shannon capacity of metric graphs with entanglement”, Proc. of the National Academy of Sciences of the United States of America, 2012 | DOI
[9] Dobrynin V. Ju., “On graph classification based on a minimum rank of a matrix associated with a graph”, Vestnik S.-Peterb. un-ta, ser. 10: Prikladnaya matematika, informatika, processy upravleniya, 2004, no. 3, 30–38 | Zbl
[10] Lovász L., “On the Shannon capacity of graphs”, IEEE Trans. Inform. Theory, 25 (1979), 1–7 | DOI | MR | Zbl
[11] Jethava V., Martinsson A., Bhattacharyya C., Dubhashi D. P., “The Lovasz $\vartheta$ function, SVMs and finding large dense subgraphs”, Advances in Neural Information Processing Systems, 25 (2012), 1169–1177
[12] Duan R., Severini S., Winter A., “Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovász Number”, IEEE Trans. Inform. Theory, 59 (2013), 1164–1174 | DOI | MR
[13] Goemans M. X., “Semidefinite programming in combinatorial optimization”, Math. Program., 79 (1997), 143–161 | MR | Zbl
[14] Dobrynin V. Yu., “On the function “sandwiched” between $\alpha(G)$ and $\overline\chi(G)$”, Electron. J. Combinat., 4 (1997), R19, 3 pp. | MR | Zbl
[15] Dobrynin V., Pliskin M., Prosolupov E., “On the functions with values from $[\alpha(G),\overline\chi(G)]$”, Electron. J. Combinat., 11:5 (2004), 5 | MR | Zbl
[16] Prosolupov E. V., “About the gap between the minimal dimension of the orthonormal labeling and size of smallest clique covering of a graph”, Vestnik S.-Peterb. un-ta, ser. 1: Matematica, mexanica, astronomia, 2004, no. 4, 51–57 | MR | Zbl
[17] Dobrynin V., “On the rank of a matirx associated with graph”, Discrete Mathematics, 276:1–3 (2004), 169–175 | DOI | MR | Zbl