@article{VSPUI_2014_1_a6,
author = {E. A. Kalinina and G. M. Khitrov},
title = {Peculiar properties of vector space of ordered $(0,1)$ $n$-tuples of elements over residue field modulo~$2$},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {62--71},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a6/}
}
TY - JOUR AU - E. A. Kalinina AU - G. M. Khitrov TI - Peculiar properties of vector space of ordered $(0,1)$ $n$-tuples of elements over residue field modulo $2$ JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 62 EP - 71 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a6/ LA - ru ID - VSPUI_2014_1_a6 ER -
%0 Journal Article %A E. A. Kalinina %A G. M. Khitrov %T Peculiar properties of vector space of ordered $(0,1)$ $n$-tuples of elements over residue field modulo $2$ %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 62-71 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a6/ %G ru %F VSPUI_2014_1_a6
E. A. Kalinina; G. M. Khitrov. Peculiar properties of vector space of ordered $(0,1)$ $n$-tuples of elements over residue field modulo $2$. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2014), pp. 62-71. http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a6/
[1] Swamy M. N. S., Thulasiraman K., Graphs: Theory and Algorithms, Per. s angl., Mir, M., 1984, 454 pp.
[2] Deo N., Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall, New York, 1974, 478 pp. | MR | Zbl
[3] Tarakanov V. E., Combinatorial problems and $(0,1)$-matrices, Nauka, M., 1985, 192 pp. | MR
[4] Seelinger G., Sissokho P., Spence L., Vanden Eynden C., “Partitions of finite vector spaces over $GF(2)$ into subspaces of dimensions 2 and $s$”, Finite Fields and Their Applications, 18:6 (2012), 1114–1132 | DOI | MR | Zbl
[5] Coppersmith D., “Solving linear equations over $GF(2)$: block Lanczos algorithm”, Linear Algebra and its Applications, 192 (1993), 33–60 ; 36:3–4 (1929), 205–338 | DOI | MR | Zbl
[6] Gegalkin I. I., “L'arithmétisation de la logique symbolique”, Mat. sb., 35:3–4 (1928), 311–377 ; 36:3–4 (1929), 205–338
[7] Lidl R., Niederreiter H., Finite fields, in 2 vol. Per. s angl., v. 1, Mir, M., 1988, 430 pp. | MR | Zbl
[8] Couceiro M., Foldes S., “Definability of Boolean function classes by linear equations over $GF(2)$”, Discrete Applied Mathematics, 142:1–3 (2004), 29–34 | DOI | MR | Zbl
[9] Faddeev D. K., Lectures on algebra. Textbook, Nauka, M., 1984, 416 pp. | MR
[10] Babai L., Frankl P., Linear Algebra Methods in Combinatorics with Applications to Geometry and Computer Science, Preliminary version 2 (September 1992), The University of Chicago, Chicago, 1992, 216 pp. | Zbl