Modelling of polarized protons dynamics in electrostatic storage rings
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2014), pp. 51-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Electric dipole moment of elementary particles (such as deuterons or protons) is a very small quantity and measurement of such small value which requires long term beam evolution (about $10^9$ turns) to accumulate enough statistical data. To develop optimal accelerator lattice one needs to do numerical modelling for polarized beam evolution during $10^{12}$ integration steps. Also such class of dynamic systems requires considering additional constraints (like symplecticity and energy conservation) during the integration period. To search electric dipole moment horizontal polarization has to be conserved during long time. Polarized beam dynamics in electrostatic accelerators was modelled. The article discussed different methods to solve T–BMT equation numerically, analytical estimations being made as well. Different programs to simulate spin orbit motion of polarized beam were used. It was shown, that spin coherence time could be increased up to several thousand seconds using customly shaped deflectors with sextupole fields. Bibliogr. 17. Il. 4.
Mots-clés : electric dipole moment
Keywords: beam dynamics, electrostatic accelerators, spin dynamics.
@article{VSPUI_2014_1_a5,
     author = {D. V. Zyuzin and Yu. V. Senichev and S. N. Andrianov and A. N. Ivanov},
     title = {Modelling of polarized protons dynamics in electrostatic storage rings},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {51--61},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a5/}
}
TY  - JOUR
AU  - D. V. Zyuzin
AU  - Yu. V. Senichev
AU  - S. N. Andrianov
AU  - A. N. Ivanov
TI  - Modelling of polarized protons dynamics in electrostatic storage rings
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 51
EP  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a5/
LA  - ru
ID  - VSPUI_2014_1_a5
ER  - 
%0 Journal Article
%A D. V. Zyuzin
%A Yu. V. Senichev
%A S. N. Andrianov
%A A. N. Ivanov
%T Modelling of polarized protons dynamics in electrostatic storage rings
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 51-61
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a5/
%G ru
%F VSPUI_2014_1_a5
D. V. Zyuzin; Yu. V. Senichev; S. N. Andrianov; A. N. Ivanov. Modelling of polarized protons dynamics in electrostatic storage rings. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2014), pp. 51-61. http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a5/

[1] Ramsey N. F., “Time reversal, charge conjugation, magnetic pole conjugation, and parity”, Phys. Rev., 109 (1958), 225–226 | DOI

[2] Semertzidis Y. K., “A storage ring proton electric dipole moment experiment: most sensitive experiment to CP-violation beyond the Standard Model”, Proc. of the DPF-2011 Conference (Providence, RI, USA, 2011), 1–8

[3] Pospelov M., Ritz A., “Electric dipole moments as probes of new physics”, Annals of Physics, 318 (2005), 119–169 | DOI | Zbl

[4] Jackson J. D., Classical electrodynamics, John Wiley Sons, New York, 1998, 832 pp. | MR

[5] Lehrach A., Lorentz B., Morse W., Nikolaev N., Rathmann F., Precursor experiments to search for permanent electric dipole moments (EDMs) of protons and deuterons at COSY, 2012, arXiv: 1201.5773

[6] Semertzidis Y. K., g-2 Collaboration, “Measurement of the muon anomalous magnetic moment to 0.7 ppm”, Nucl. Phys. B, 117, Proc. Suppl. (2003), 373–384 | DOI

[7] Farley F. J. M., Semertzidis Y. K., “The 47 years of muon g-2”, Progress in Particle and Nuclear Physics, 52:1 (2004), 1–83 | DOI

[8] Berz M., “Computational aspects of design and simulation: COSY INFINITY”, Nuclear Instruments and Methods, A298 (1990), 473–479 | DOI

[9] Andrianov S. N., Dynamical modeling of system control of bunch particles, Izd-vo S.-Peterb. un-ta, St. Petersburg, 2004, 366 pp.

[10] Szilágyi M., Electron and ion optics, Plenum Press, New York, 1988, 556 pp.

[11] Oevel W., Sofroniou M., Symplectic Runge-Kutta schemes. II: Classification of symmetric methods, preprint, University of Paderborn, Germany, 1996, 47 pp.

[12] Ivanov A., “Particle tracking in electrostatic fields with energy conservation”, Proc. of ICAP 2012 (Rostock, Warnemünde, Germany, 2012), 149–151

[13] Lysenko A. P., Polunin A. A., Shatunov Yu. M., “Spin-frequency spread measurements in a storage ring”, Part. Accel., 18 (1986), 215–222

[14] Senichev Yu., Moller S. P., “Beam dynamics in electrostatic rings”, Proc. of the 7th European Particle Accelerator Conferehce EPAC'00 (Vienna, Austria, 2000), 794–796

[15] Senichev Yu., Lehrach A., Maier R., Zyuzin D., “The spin aberration of polarized beam in electrostatic rings”, Proc. of the 2nd Intern. Particle Accelerator Conference IPAC'11 (San Sebastián, Spain, 2011), 2175–2177

[16] Senichev Yu., Maier R., Zyuzin D., Berz M., “Alternating spin aberration electrostatic lattice for EDM ring”, Proc. of the 3rd Intern. Particle Accelerator Conference IPAC'12 (New Orleans, LA, USA, 2012), 1332–1334

[17] Zyuzin D., Maier R., Senichev Yu., “High order non-linear motion in electrostatic rings”, Proc. of the 2nd Intern. Particle Accelerator Conference IPAC'11 (San Sebastián, Spain, 2011), 2172–2174