Modeling of interaction between a water molecule and crystal surfaces
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2014), pp. 138-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An interaction model between a water molecule and magnesium oxide crystal surface is considered. The potential energy of the system is calculated with help the molecular mechanics method, that takes into account the atom-atom interaction using model semi-empirical potentials. Fragment of the crystal surface is represented by the cluster model, that consists of a finite number of atoms belonging to the surface and the nearest atomic planes. Different cluster models containing from 9 to 24 atoms of magnesium oxide were considered. It is shown that the distance between the water molecule and the surface in equilibrium point is 3 Å. It is found that the interaction is electrostatic in its nature. Stretching frequencies of the water molecule adsorbed at the surface are calculated. The results obtained are compared with the quantum-mechanical calculations. Bibliogr. 15. Il. 3. Table 1.
Keywords: molecular mechanics, intermolecular interaction potentials, metal oxides.
Mots-clés : adsorption
@article{VSPUI_2014_1_a13,
     author = {A. V. Raik and V. A. Klemeshev},
     title = {Modeling of interaction between a water molecule and crystal surfaces},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {138--146},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a13/}
}
TY  - JOUR
AU  - A. V. Raik
AU  - V. A. Klemeshev
TI  - Modeling of interaction between a water molecule and crystal surfaces
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 138
EP  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a13/
LA  - ru
ID  - VSPUI_2014_1_a13
ER  - 
%0 Journal Article
%A A. V. Raik
%A V. A. Klemeshev
%T Modeling of interaction between a water molecule and crystal surfaces
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 138-146
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a13/
%G ru
%F VSPUI_2014_1_a13
A. V. Raik; V. A. Klemeshev. Modeling of interaction between a water molecule and crystal surfaces. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2014), pp. 138-146. http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a13/

[1] Ermakov A. I., Quantum mechanics and quantum chemistry, Urait, M., 2010, 555 pp.

[2] Clark T., A Handbook of computational chemistry: A practical guide to chemical structure and energy calculations, Per. s angl. A. A. Korkina, eds. V. S. Maistrukova, Yu. N. Panchenko, Mir, M., 1990, 383 pp.

[3] Tsirelson V. G., Quantum chemistry. Molecules, molecular systems and solid bodies, BINOM, M., 2010, 496 pp.

[4] Kaplan I. G., Intermolecular interactions: Physical picture, computational methods and model potentials, BINOM, M., 2012, 394 pp.

[5] Kaplan I. G., Introduction to intermolecular interactions, Nauka, Gl. red. fiz.-mat. lit., M., 1982, 312 pp.

[6] Rogers D., Computational chemistry using the PC, Ed. 3, John Wiley Sons, Hoboken, New Jersey, 2003, 363 pp.

[7] Bedrina M. E., Egorov N. V., Klemeshev V. A., “Modeling nanostructures on a high performance computing system”, Vestnik S.-Peterb. un-ta, ser. 4: Phisica, chimia, 2010, no. 4, 136–140

[8] Stewart J. J. P., “Optimization of parameters for semiempirical methods. I: Method”, Journal of Computational Chemistry, 10:2 (1989), 209–220 | DOI

[9] Bandura A. V., Sykes D. G., “Adsorption of Water on the $\mathrm{TiO}_2$ (Rutile) (110) Surface: A Comparison of Periodic and Embedded Cluster Calculations”, J. Phys. Chem. B, 108:23 (2004), 7844–7853 | DOI

[10] Fox H., Gillan M. J., Horsfield A. P., “Methods for calculating the desorption rate of an isolated molecule from a surface: Water on MgO(001)”, Surface Science, 601 (2007), 5016–5025 | DOI

[11] Bellert D., Burns K. L., Wampler R. e. a., “An accurate determination of the ionization energy of the MgO molecule”, Chem. Phys. Lett., 322 (2000), 41–44 | DOI

[12] Abarenkov I. V., Tretyak V. M., Tulub A. V., “Mechanism of the water molecule dissociation on (100) crystal-mgo surfaces in the model of paired nonempiric potentials”, Khim. fizika, 4:4 (1985), 974–980

[13] Egorov N. V., Denisov V. P., Ermoshina M. S., “Simulation of interaction of charge particle with electrode surface of intricate geometry”, J. of Surface, 2005, no. 7, 60–63

[14] Raik A. V., Egorov N. V., Bedrina M. E., “Modelling intermolecular interaction potentials”, Vestnik S.-Peterb. un-ta, ser. 10: Prikladnaya matematika, informatika, processy upravleniya, 2012, no. 3, 79–87

[15] Raik A. V., Bedrina M. E., “Modeling of water adsorption process on crystal surfaces”, Vestnik S.-Peterb. un-ta, ser. 10: Prikladnaya matematika, informatika, processy upravleniya, 2011, no. 2, 67–76