On the ultimate boundedness and permanence of solutions for a class of discrete-time switched models of population dynamics
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2014), pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A discrete-time Lotka–Volterra type system with switching of parameter values is studied. The system consists of a family of subsystems of nonlinear difference equations and a switching law constantly determining which subsystem is active. It focuses on conditions providing the uniform ultimate boundedness or uniform permanence for the considered system for any switching law. A general approach to the problem is based on the constructing of a common Lyapunov function for the family of subsystems corresponding to the switched system. In the present paper, a new construction of such Lyapunov function for considered equations is suggested. The sufficient conditions of the existence of a common Lyapunov function in the given form satisfying in the positive orthant all the assumptions of the Yoshizawa ultimate boundedness theorem are obtained. These conditions are formulated in terms of solvability of auxiliary systems of algebraic inequalities, and their fulfillment guarantees that the switched system is ultimately bounded or uniformly permanent with respect to switching law. The proposed approach permits to relax some known ultimate boundedness and permanence conditions and to extend them to wider classes of discrete-time models of population dynamics. An example is presented to demonstrate the effectiveness of the obtained results. Bibliogr. 25.
Keywords: population dynamics, switched systems, difference equations, ultimate boundedness, Lyapunov functions.
Mots-clés : permanence
@article{VSPUI_2014_1_a0,
     author = {A. Yu. Aleksandrov and A. V. Platonov},
     title = {On the ultimate boundedness and permanence of solutions for a class of discrete-time switched models of population dynamics},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {5--16},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a0/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
AU  - A. V. Platonov
TI  - On the ultimate boundedness and permanence of solutions for a class of discrete-time switched models of population dynamics
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 5
EP  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a0/
LA  - ru
ID  - VSPUI_2014_1_a0
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%A A. V. Platonov
%T On the ultimate boundedness and permanence of solutions for a class of discrete-time switched models of population dynamics
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 5-16
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a0/
%G ru
%F VSPUI_2014_1_a0
A. Yu. Aleksandrov; A. V. Platonov. On the ultimate boundedness and permanence of solutions for a class of discrete-time switched models of population dynamics. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2014), pp. 5-16. http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a0/

[1] Volterra V., Lecons sur la theorie mathematique de la lutte pour la vie, Paris, 1931, 248 pp.

[2] Pykh Yu. A., Equilibrium and stability in models of population dynamics, Nauka, M., 1983, 182 pp. | MR

[3] Hofbauer J., Sigmund K., Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998, 323 pp. | MR | Zbl

[4] Hofbauer J., Hutson V., Jansen W., “Coexistence for systems governed by difference equations of Lotka–Volterra type”, J. Math. Biol., 25 (1987), 553–570 | DOI | MR | Zbl

[5] Redheffer R., Walter W., “Solution of the stability problem for a class of generalized Volterra prey-predator systems”, J. of Differential Equations, 52:2 (1984), 245–263 | DOI | MR | Zbl

[6] Gilpin M. E., Ayala F. J., “Global models of growth and competition”, Proc. Nat. Acad. Sci. USA, 70 (1973), 3590–3593 | DOI | Zbl

[7] Gorbunova E. A., Kolpak E. P., “Mathematical models of single population”, Vestnik S.-Peterb. un-ta, ser. 10: Prikladnaya matematika, informatika, processy upravleniya, 2012, no. 4, 18–30 | MR

[8] Chen F., Wu L., Li Z., “Permanence and global attractivity of the discrete Gilpin–Ayala type population model”, Computers and Mathematics with Applications, 53 (2007), 1214–1227 | DOI | MR | Zbl

[9] Lu Z., Wang W., “Permanence and global attractivity for Lotka–Volterra difference systems”, J. Math. Biol., 39 (1999), 269–282 | DOI | MR | Zbl

[10] Chen F., “Some new results on the permanence and extinction of nonautonomous Gilpin–Ayala type competition model with delays”, Nonlinear Analysis: Real World Applications, 7 (2006), 1205–1222 | DOI | MR | Zbl

[11] Aleksandrov A. Yu., Platonov A. V., Chen Y., “On the ultimate boundedness of some classes of models of population dynamics”, Vestnik S.-Peterb. un-ta, ser. 10: Prikladnaya matematika, informatika, processy upravleniya, 2010, no. 2, 3–17

[12] Aleksandrov A. Yu., Chen Y., Platonov A. V., Zhang L., “Stability analysis and uniform ultimate boundedness control synthesis for a class of nonlinear switched difference systems”, J. of Difference Equations and Applications, 18:9 (2012), 1545–1561 | DOI | MR | Zbl

[13] Bao J., Mao X., Yin G., Yuan C., “Competitive Lotka–Volterra population dynamics with jumps”, Nonlinear Analysis, 74 (2011), 6601–6616 | DOI | MR | Zbl

[14] Hu H., Wang K., Wu D., “Permanence and global stability for nonautonomous $N$-species Lotka–Volterra competitive system with impulses and infinite delays”, J. Math. Anal. Appl., 377 (2011), 145–160 | DOI | MR | Zbl

[15] Martynyuk A. A., “Stability in the models of real world phenomena”, Nonlinear Dynamics and Systems Theory, 11:1 (2011), 7–52 | MR | Zbl

[16] Zhu C., Yin G., “On competitive Lotka–Volterra model in random environments”, J. Math. Anal. Appl., 357 (2009), 154–170 | DOI | MR | Zbl

[17] Zhu C., Yin G., “On hybrid competitive Lotka–Volterra ecosystems”, Nonlinear Analysis, 71 (2009), 1370–1379 | DOI | MR

[18] Liberzon D., Morse A. S., “Basic problems in stability and design of switched systems”, IEEE Control Systems Magazine, 19:15 (1999), 59–70 | DOI

[19] Shorten R., Wirth F., Mason O., Wulf K., King C., “Stability criteria for switched and hybrid systems”, SIAM Rev., 49:4 (2007), 545–592 | DOI | MR | Zbl

[20] Aleksandrov A. Yu., Platonov A. V., Chen Y., “On the absolute stability of nonlinear switched systems”, Vestnik S.-Peterb. un-ta, ser. 10: Prikladnaya matematika, informatika, processy upravleniya, 2008, no. 2, 119–133

[21] Chen F. D., Shi C. L., “Global attractivity in an almost periodic multi-spesies nonlinear ecological model”, Appl. Math. Comput., 180:1 (2006), 376–392 | DOI | MR | Zbl

[22] Ayala F. J., Gilpin M. E., Eherenfeld J. G., “Competition between species: theoretical models and experimental tests”, Theoretical Population Biology, 4 (1973), 331–356 | DOI | MR

[23] Gilpin M. E., Ayala F. J., “Schoener's model and Drosophila competition”, Theoretical Population Biology, 9 (1976), 12–14 | DOI

[24] Martynyuk A. A., Obolenskii A. Yu., “Stability of solutions of Wazewski's autonomous systems”, Differential Equations, 16:8 (1981), 890–901 | MR | Zbl

[25] Aleksandrov A. Yu., Platonov A. V., “On stability and dissipativity of some classes of complex systems”, Automation and Remote Control, 70:8 (2009), 1265–1280 | DOI | MR | Zbl