Mots-clés : permanence
@article{VSPUI_2014_1_a0,
author = {A. Yu. Aleksandrov and A. V. Platonov},
title = {On the ultimate boundedness and permanence of solutions for a class of discrete-time switched models of population dynamics},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {5--16},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a0/}
}
TY - JOUR AU - A. Yu. Aleksandrov AU - A. V. Platonov TI - On the ultimate boundedness and permanence of solutions for a class of discrete-time switched models of population dynamics JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 5 EP - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a0/ LA - ru ID - VSPUI_2014_1_a0 ER -
%0 Journal Article %A A. Yu. Aleksandrov %A A. V. Platonov %T On the ultimate boundedness and permanence of solutions for a class of discrete-time switched models of population dynamics %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 5-16 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a0/ %G ru %F VSPUI_2014_1_a0
A. Yu. Aleksandrov; A. V. Platonov. On the ultimate boundedness and permanence of solutions for a class of discrete-time switched models of population dynamics. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2014), pp. 5-16. http://geodesic.mathdoc.fr/item/VSPUI_2014_1_a0/
[1] Volterra V., Lecons sur la theorie mathematique de la lutte pour la vie, Paris, 1931, 248 pp.
[2] Pykh Yu. A., Equilibrium and stability in models of population dynamics, Nauka, M., 1983, 182 pp. | MR
[3] Hofbauer J., Sigmund K., Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998, 323 pp. | MR | Zbl
[4] Hofbauer J., Hutson V., Jansen W., “Coexistence for systems governed by difference equations of Lotka–Volterra type”, J. Math. Biol., 25 (1987), 553–570 | DOI | MR | Zbl
[5] Redheffer R., Walter W., “Solution of the stability problem for a class of generalized Volterra prey-predator systems”, J. of Differential Equations, 52:2 (1984), 245–263 | DOI | MR | Zbl
[6] Gilpin M. E., Ayala F. J., “Global models of growth and competition”, Proc. Nat. Acad. Sci. USA, 70 (1973), 3590–3593 | DOI | Zbl
[7] Gorbunova E. A., Kolpak E. P., “Mathematical models of single population”, Vestnik S.-Peterb. un-ta, ser. 10: Prikladnaya matematika, informatika, processy upravleniya, 2012, no. 4, 18–30 | MR
[8] Chen F., Wu L., Li Z., “Permanence and global attractivity of the discrete Gilpin–Ayala type population model”, Computers and Mathematics with Applications, 53 (2007), 1214–1227 | DOI | MR | Zbl
[9] Lu Z., Wang W., “Permanence and global attractivity for Lotka–Volterra difference systems”, J. Math. Biol., 39 (1999), 269–282 | DOI | MR | Zbl
[10] Chen F., “Some new results on the permanence and extinction of nonautonomous Gilpin–Ayala type competition model with delays”, Nonlinear Analysis: Real World Applications, 7 (2006), 1205–1222 | DOI | MR | Zbl
[11] Aleksandrov A. Yu., Platonov A. V., Chen Y., “On the ultimate boundedness of some classes of models of population dynamics”, Vestnik S.-Peterb. un-ta, ser. 10: Prikladnaya matematika, informatika, processy upravleniya, 2010, no. 2, 3–17
[12] Aleksandrov A. Yu., Chen Y., Platonov A. V., Zhang L., “Stability analysis and uniform ultimate boundedness control synthesis for a class of nonlinear switched difference systems”, J. of Difference Equations and Applications, 18:9 (2012), 1545–1561 | DOI | MR | Zbl
[13] Bao J., Mao X., Yin G., Yuan C., “Competitive Lotka–Volterra population dynamics with jumps”, Nonlinear Analysis, 74 (2011), 6601–6616 | DOI | MR | Zbl
[14] Hu H., Wang K., Wu D., “Permanence and global stability for nonautonomous $N$-species Lotka–Volterra competitive system with impulses and infinite delays”, J. Math. Anal. Appl., 377 (2011), 145–160 | DOI | MR | Zbl
[15] Martynyuk A. A., “Stability in the models of real world phenomena”, Nonlinear Dynamics and Systems Theory, 11:1 (2011), 7–52 | MR | Zbl
[16] Zhu C., Yin G., “On competitive Lotka–Volterra model in random environments”, J. Math. Anal. Appl., 357 (2009), 154–170 | DOI | MR | Zbl
[17] Zhu C., Yin G., “On hybrid competitive Lotka–Volterra ecosystems”, Nonlinear Analysis, 71 (2009), 1370–1379 | DOI | MR
[18] Liberzon D., Morse A. S., “Basic problems in stability and design of switched systems”, IEEE Control Systems Magazine, 19:15 (1999), 59–70 | DOI
[19] Shorten R., Wirth F., Mason O., Wulf K., King C., “Stability criteria for switched and hybrid systems”, SIAM Rev., 49:4 (2007), 545–592 | DOI | MR | Zbl
[20] Aleksandrov A. Yu., Platonov A. V., Chen Y., “On the absolute stability of nonlinear switched systems”, Vestnik S.-Peterb. un-ta, ser. 10: Prikladnaya matematika, informatika, processy upravleniya, 2008, no. 2, 119–133
[21] Chen F. D., Shi C. L., “Global attractivity in an almost periodic multi-spesies nonlinear ecological model”, Appl. Math. Comput., 180:1 (2006), 376–392 | DOI | MR | Zbl
[22] Ayala F. J., Gilpin M. E., Eherenfeld J. G., “Competition between species: theoretical models and experimental tests”, Theoretical Population Biology, 4 (1973), 331–356 | DOI | MR
[23] Gilpin M. E., Ayala F. J., “Schoener's model and Drosophila competition”, Theoretical Population Biology, 9 (1976), 12–14 | DOI
[24] Martynyuk A. A., Obolenskii A. Yu., “Stability of solutions of Wazewski's autonomous systems”, Differential Equations, 16:8 (1981), 890–901 | MR | Zbl
[25] Aleksandrov A. Yu., Platonov A. V., “On stability and dissipativity of some classes of complex systems”, Automation and Remote Control, 70:8 (2009), 1265–1280 | DOI | MR | Zbl