On construction of common Lyapunov function for a family of mechanical systems with one degree of freedom
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 49-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Certain classes of families of nonlinear mechanical systems with one degree of freedom, which is described by second order differential equation are studied. There are two parameters, damping and rigidity coefficients, in these equqtions and we assume that switching can take place in these coefficients. The problem of stability and dissipativity of corresponding hybrid system, which contains a considered family of systems and a switching law, defining which system is active in every moment is investigated. Conditions of the existence of CLFs of the a given form are obtained using second Lyapunov method. Fulfilment of these conditions provides asymptotic stability of equilibrium positions of corresponding switched systems for any switching law. It is proved that for considered families of essentially nonlinear systems we can guarantee the existence of CLFs under weaker assumptions than for linear ones. Thus, in comparison with linear systems, nonlinear ones are “more stable” with respect to switching of parameters values. Theorems 1 and 2 can be used for the design of stabilizing controls for mechanical systems. Challenging direction for further research is extension of the obtained results to the switched nonlinear mechanical systems with several degrees of freedom. Bibliogr. 16.
Keywords: nonlinear systems, mechanical systems, hybrid systems, stability, Lyapunov functions.
@article{VSPUI_2013_4_a5,
     author = {I. E. Murzinov},
     title = {On construction of common {Lyapunov} function for a family of mechanical systems with one degree of freedom},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {49--57},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a5/}
}
TY  - JOUR
AU  - I. E. Murzinov
TI  - On construction of common Lyapunov function for a family of mechanical systems with one degree of freedom
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 49
EP  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a5/
LA  - ru
ID  - VSPUI_2013_4_a5
ER  - 
%0 Journal Article
%A I. E. Murzinov
%T On construction of common Lyapunov function for a family of mechanical systems with one degree of freedom
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 49-57
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a5/
%G ru
%F VSPUI_2013_4_a5
I. E. Murzinov. On construction of common Lyapunov function for a family of mechanical systems with one degree of freedom. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 49-57. http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a5/

[1] DeCarlo R., Branicky M., Pettersson S., Lennartson B., “Perspectives and results on the stability and stabilisability of hybrid systems”, Proc. IEEE, 88 (2000), 1069–1082 | DOI

[2] Hai Lin, Antsaklis P. J., “Stability and stabilizability of switched linear systems: a survey of recent results”, IEEE Trans. Automat. Control, 54:2 (2009), 308–322 | DOI | MR

[3] Shorten R., Wirth F., Mason O., Wulff K., King C., “Stability Criteria for Switched and Hybrid Systems”, SIAM Rev., 49:4 (2007), 545–592 | DOI | MR | Zbl

[4] Aleksandrov A. Yu., Platonov A. V., Stability of complex systems, NII Himii S.-Peterb. un-ta, S.-Petersburg, 2002, 79 pp.

[5] Demidovich B. P., Lectures on mathematical theory of stability, Nauka, M., 1967, 469 pp. | MR

[6] Liberzon D., Morse A. S., “Basic Problems in Stability and Design of Switched Systems”, IEEE Control Syst. Magazin, 59:15 (1999), 59–70 | DOI

[7] Pakshin P. V., Pozdyayev V. V., “Existence criterion of the common quadratic Lyapunov function for a set of linear second-order systems”, Journal of Computer and Systems Sciences International, 44:4 (2005), 519–524 | MR

[8] Narendra K. S., Balakrishnan J., “A common Lyapunov function for stable LTI systems with commuting A-matrices”, IEEE Trans. Automat. Control, 39:12 (1994), 2469–2471 | DOI | MR | Zbl

[9] V. D. Blondel, A. Megretski, Unsolved Problems in Mathematical Systems and Control Theory, Princeton University Press, Princeton, 2004, 334 pp. | MR | Zbl

[10] Kosov A. A., Vassilyev S. N., Zherlov A. K., “Logic-based controllers for hybrid systems”, Intern. J. Hybrid Syst., 4:4 (2004), 271–299

[11] Aleksandrov A. Yu., Chen Y., Kosov A. A., Zhang L., “Stability of Hybrid Mechanical Systems with Switching Linear Force Fields”, Nonlinear Dynamics and Systems Theory, 11:1 (2011), 53–64 | MR | Zbl

[12] Zubov V. I., Mathematical Methods for Investigation of Control Systems, Sudostroenie, L., 1959, 324 pp. | MR

[13] Rouche N., Habets P., Laloy M., Stability Theory by Liapunov's Direct Method, Springer, New York e. a., 1977, 300 pp. | MR | Zbl

[14] Vasiliev S. N., Kosov A. A., “Common Lyapunov functions and Matrosov comparison vector-functions in hybrid systems analysis”, Intern. Chetaev conference (Kazan, 2012), v. 2, section 2, 162–176

[15] Aleksandrov A. Yu., Murzinov I. E., “On the Existence of a Common Lyapunov Function for a Family of Nonlinear Mechanical Systems with One Degree of Freedom”, Nonlinear Dynamics and Systems Theory, 12:2 (2012), 137–143 | MR | Zbl

[16] Aleksandrov A. Yu., Platonov A. V., Comparison method and stability of nonlinear systems, Izd-vo S.-Peterb. un-ta, S.-Petersburg, 2012, 263 pp.