Asymptotic behavior model of turbulence near the surface
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 42-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with the asymptotic analysis of the equations describing fluctuating structure of the turbulent flow of incompressible fluid. In addition to conventional viscous sublayer and a “buffer” zone — another area adjacent to the surface, and whose size of comparable with the height of natural roughness is considered. For this region approximate equations for the components of the Reynolds stress tensor are obtained and theor solutions are found. Bibliogr. 6.
Keywords: asymptotic analysis, Reynolds stress, the natural roughness.
Mots-clés : turbulence, pulsation
@article{VSPUI_2013_4_a4,
     author = {S. U. Malamanov},
     title = {Asymptotic behavior model of turbulence near the surface},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {42--48},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a4/}
}
TY  - JOUR
AU  - S. U. Malamanov
TI  - Asymptotic behavior model of turbulence near the surface
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 42
EP  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a4/
LA  - ru
ID  - VSPUI_2013_4_a4
ER  - 
%0 Journal Article
%A S. U. Malamanov
%T Asymptotic behavior model of turbulence near the surface
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 42-48
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a4/
%G ru
%F VSPUI_2013_4_a4
S. U. Malamanov. Asymptotic behavior model of turbulence near the surface. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 42-48. http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a4/

[1] Van-Dajk M., Perturbation methods in fluid mechanics, Per. s angl., Mir, M., 1967, 310 pp.

[2] Najfje A., Introduction to perturbation methods, Per. s angl. I. E. Zina, E. A. Troppa, R. G. Barantsev, Mir, M., 1984, 535 pp. | MR

[3] Frik P. G., Turbulence: Approaches and models, Izd. 2-e, ispr. i dop., NIC «Reguljarnaja i haoticheskaja dinamika», M.–Izhevsk, 2010, 332 pp.

[4] Rotta I. K., The turbulent boundary layer in an incompressible fluid, Per. s angl. I. D. Zheltuhina, N. A. Sergievskogo, ed. Yu. F. Ivanjuta, Sudostroenie, L., 1967, 232 pp.

[5] Ivlev V. M., Turbulent motion of high-continua, Nauka, M., 1975, 255 pp.

[6] Suslov A. G., Korsakova I. M., Purpose, identification and control of roughness parameters, Izdatel'stvo MGIU, M., 2010, 112 pp.