Duopoly in queueing system
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 32-41
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A non-cooperative two-person game which is related to the queueing system $ M/M/2 $ is considered. There are two services which serve the stream of customers with exponential distribution with parameters $\mu_1$ and $\mu_2$ respectively. The stream forms the Poisson process with intensity $\lambda$. The problem of pricing and determining the optimal intensity for each firm in the competition and cooperation is solved. Increase of the number of players is also carried out. Bibliogr. 9. Tabl. 4.
Keywords: duopoly, equilibrium prices, queueing system.
@article{VSPUI_2013_4_a3,
     author = {A. V. Mazalova},
     title = {Duopoly in queueing system},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {32--41},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a3/}
}
TY  - JOUR
AU  - A. V. Mazalova
TI  - Duopoly in queueing system
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 32
EP  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a3/
LA  - ru
ID  - VSPUI_2013_4_a3
ER  - 
%0 Journal Article
%A A. V. Mazalova
%T Duopoly in queueing system
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 32-41
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a3/
%G ru
%F VSPUI_2013_4_a3
A. V. Mazalova. Duopoly in queueing system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 32-41. http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a3/

[1] Hotelling H., “Stability in Competition”, Economic Journal, 39 (1929), 41–57 | DOI

[2] D'Aspremont C., Gabszewicz J., Thisse J.-F., “On Hotelling's “Stability in Competition””, Econometrica, 47:5 (1979), 1145–1150 | DOI | MR

[3] Mazalova A. V., “Hotelling's duopoly on the plane with Manhattan distance”, Vestn. S.-Peterb. un-ta, ser. 10: prikladnaja matematika, informatika, processi upravlenija, 2012, no. 2, 33–43

[4] Altman E., Shimkin N., “Individual equilibrium and learning in processor sharing systems”, Operations Research, 46:6 (1998), 776–784 | DOI | MR | Zbl

[5] Hassin R., Haviv M., To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems, Springer, New York, 2003, 171 pp. | MR

[6] Koryagin M. E., “Competitive traffic”, Avtomatika i telemehanika, 2006, no. 3, 143–151

[7] Luski I., “On partial equilibrium in a queueing system with two services”, The Review of Economic Studies, 43:3 (1976), 519–525 | DOI | Zbl

[8] Levhari D., Luski I., “Duopoly pricing and waiting lines”, European Economic Review, 1978, no. 11, 17–35 | DOI

[9] Saati T. L., Elements of queuing theory and its applications, Per. s angl. E. G. Kovalenko, Isd. 2-e, ed. I. N. Kovalenko, Sov. radio, M., 1971, 520 pp. | MR