On constructing exact penalty functions
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 21-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are a large number of publications dedicated to investigation and problems of using exact penalty functions. At present the method of exact penalty functions is widely used for solving optimization problems with constraints. But using this method involves certain difficulties. Particularly there are no simple techniques of calculating the acceptable values of penalty coefficients. The article discusses approaches to determine the value of penalty coefficients for convex problems during the execution of the optimization algorithm. Significant difficulties in forming the equivalent unconstrained optimization problems arise if the functions describing the original problem are not defined on the whole variable space. For such case it is proposed to use special extensions of functions from a feasible set of the original problem to the whole variable space. This approach also allows to overcome the problem of bad scalability of the original problem. Bibliogr. 9. Il. 1.
Keywords: nondifferentiable optimization, penalty functions, convex extension of functions.
@article{VSPUI_2013_4_a2,
     author = {Yu. P. Laptin},
     title = {On constructing exact penalty functions},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {21--31},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a2/}
}
TY  - JOUR
AU  - Yu. P. Laptin
TI  - On constructing exact penalty functions
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 21
EP  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a2/
LA  - ru
ID  - VSPUI_2013_4_a2
ER  - 
%0 Journal Article
%A Yu. P. Laptin
%T On constructing exact penalty functions
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 21-31
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a2/
%G ru
%F VSPUI_2013_4_a2
Yu. P. Laptin. On constructing exact penalty functions. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 21-31. http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a2/

[1] Pshenichniy B. N., The linearization method, Nauka, M., 1983, 136 pp. | MR

[2] Shor N. Z., Nondifferentiable Optimization and Polynomial Problems, Kluwer Academic Publishers, Amsterdam–Dordrecht–London, 1998, 381 pp. | MR

[3] Demianov V. F., Optimality conditions and the calculus of variations, Vysshaya shkola, M., 2005, 335 pp.

[4] Evtushenko U. G., Zhadan V. G., “Exact auxiliary functions in optimization problems”, Jurn. vyssh. matematiki i matem. fiziki, 30:1 (1990), 43–57 | MR

[5] Laptin U. P., “Some of the questions of determination the coefficients of non-smooth penalty functions”, Teoriya optimal'nyh resheniy, 11, In-t kibernetiki imeni V. M. Glushkova NAN Ukrainy, Kiev, 2012, 73–79

[6] Laptin U. P., “One approach to solving nonlinear constrained optimization problems”, Kibernetika i sistemniy analiz, 2009, no. 3, 182–187 | MR | Zbl

[7] Laptin U. P., Lihovid A. P., “Using convex extensions of functions for solving nonlinear optimization problems”, Upravlyauschie sistemy i mashiny, 2010, no. 6, 25–31

[8] Laptin U. P., Bardadym T. A., “Some approaches to the regularization of non-linear optimization problems”, Problemy upravleniya i informatiki, 2011, no. 3, 57–68

[9] Hiriart-Urruty J.-B., Lemarechal C., Convex Analysis and Minimization Algorithms, in 2 vol., v. I, Springer-Verlag, Berlin, 1991, 417 pp. ; v. II, 347 pp. | MR