Combined method of face detection on images using Gaussian mixture model and Haar's cascades
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 99-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well known Gaussian mixture model and the Viola–Jones algorithm are combined into one method which provides a high detection rate and a low false negative rate. A two-dimensional windowed discrete cosine transform is shown. Discrete cosine transform coefficients were used as learning features for a mixture model. Optimal parameters of Gaussian mixture model and the number of the first cosine coefficients are found out. The proposed method is compared with Viola–Jones approach on a large image database from social networks. Bibliogr. 17. Il. 4. Table 2.
Keywords: face detection, image processing, pattern recognition, Viola–Jones, Gaussian mixture model
Mots-clés : cosine transform.
@article{VSPUI_2013_4_a11,
     author = {D. M. Timoshenko},
     title = {Combined method of face detection on images using {Gaussian} mixture model and {Haar's} cascades},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {99--104},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a11/}
}
TY  - JOUR
AU  - D. M. Timoshenko
TI  - Combined method of face detection on images using Gaussian mixture model and Haar's cascades
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 99
EP  - 104
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a11/
LA  - ru
ID  - VSPUI_2013_4_a11
ER  - 
%0 Journal Article
%A D. M. Timoshenko
%T Combined method of face detection on images using Gaussian mixture model and Haar's cascades
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 99-104
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a11/
%G ru
%F VSPUI_2013_4_a11
D. M. Timoshenko. Combined method of face detection on images using Gaussian mixture model and Haar's cascades. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 99-104. http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a11/

[1] Liao Y. M., Lin J. C., Han C. C., “Why Recognition in a Statistics-based Face Recognition System Should be based on the Pure Face Portion: a Probabilistic Decision-based Proof”, Pattern Recognition, 34:5 (2001), 1393–1403 | Zbl

[2] Lucey S., Sanderson C., Synthesized GMM Free-parts Based Face Representation for Pose Mismatch Reduction in Face Verification, tech. report, Electrical and Computer Engineering, Pittsburgh, 2004, 8 pp.

[3] Viola P., Jones M. J., “Robust Real-Time Face Detection”, Intern. J. of Computer Vision, 57:2 (2004), 137–154 | DOI

[4] Viola P., Jones M. J., Robust Real-Time Object Detection, tech. report CRL-2001-1, Cambridge, 2001, 30 pp.

[5] El-Bakry H. M., New Fast Principal Component Analysis for Face Detection, Faculty of Computer Science and Information Systems, Mansoura University, Mansoura, 2006, 7 pp.

[6] Zhang H., Zhao D., “Spatial Histogram Features for Face Detection in Color Images”, Lecture Notes in Computer Science, 3331, 2005, 377–384 | DOI

[7] Canny J., “A computational approach to edge detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 679–698 | DOI

[8] Vinay K. B., “Face Recognition Using Gabor Wavelet Transform”, Signals Systems and Computers, 2006, 593–597

[9] Waring C. A., Liu X., “Face Detection Using Spectral Histograms and SVMs, Systems, Man, and Cybernetics. Pt. B: Cybernetics”, IEEE Transactions, 35:3 (2005), 467–476

[10] Eickeler S., Rigoll G., Müller S., “Recognition of JPEG Compressed Face Images Based on Statistical Methods”, Image and Vision Computing, 18:4 (2000), 279–287 | DOI

[11] Dempster A. P., Laird N. M., Rubin D. B., “Maximum Likelihood from Incomplete Data via the EM Algorithm”, J. of the Royal Statistical Society. Ser. B (Methodological), 39:1 (1977), 1–38 | MR | Zbl

[12] Hartigan J. A., Wong M. A., “Algorithm AS 136: A K-Means Clustering Algorithm”, J. of the Royal Statistical Society. Ser. C (Applied Statistics), 28:1 (1979), 100–108 | Zbl

[13] Prince Simon J. D. http://www.computervisionmodels.com/

[14] Databases from other research groups http://www.ecse.rpi.edu/\allowbreakc̃vrl/database/other_Face_Databases.htm

[15] Description of FDDB http://vis-www.cs.umass.edu/fddb/

[16] OpenCV project page http://opencv.willowgarage.com/wiki/

[17] Wallace R., McLaren M., McCool C., Marcel S., “Cross-pollination of normalisation techniques from speaker to face authentication using Gaussian mixture model”, IEEE Transactions on Information Forensics and Security, 7:2 (2012), 553–562 | DOI