@article{VSPUI_2013_4_a1,
author = {G. V. Krivovichev},
title = {On one variant of the lattice {Boltzmann} equation method},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {10--20},
year = {2013},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a1/}
}
TY - JOUR AU - G. V. Krivovichev TI - On one variant of the lattice Boltzmann equation method JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2013 SP - 10 EP - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a1/ LA - ru ID - VSPUI_2013_4_a1 ER -
G. V. Krivovichev. On one variant of the lattice Boltzmann equation method. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 10-20. http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a1/
[1] Chen S., Doolen G. D., “Lattice Boltzmann method for fluid flows”, Ann. Rev. of Fluid Mech., 30 (1998), 329–364 | DOI | MR
[2] He X., Luo L. S., “Lattice Boltzmann model for the incompressible Navier–Stokes equation”, J. of Stat. Phys., 88:3/4 (1997), 927–944 | MR | Zbl
[3] Wolf-Gladrow D. A., Lattice-gas cellular automata and lattice Boltzmann models— an introduction, Springer, Berlin, 2005, 311 pp. | MR
[4] Bikulov D. A., Senin D. S., Demin D. S., Dmitriev A. V., Grachev N. E., “Realisation of the lattice Boltzmann method for the computations on GPU-cluster”, Vychislitel'nye metody i programmirovanie, 13:1 (2012), 221–228
[5] Grachev N. E., Dmitriev A. V., Senin D. S., “Modelling of the gas dynamics by the lattice Boltzmann method”, Vychislitel'nye metody i programmirovanie, 12:1 (2011), 227–231
[6] Rinaldi P. R., Dari E. A., Venere M. J., Clansse A., “A lattice Boltzmann solver for 3D fluid simulation on GPU”, Simul. Model. Pract. and Theor., 25 (2012), 163–171 | DOI
[7] Xiong Q. G., Li B., Xu J., Fang X. J., Wang X. W., Wang L. M., He X. F., Ge W., “Efficient parallel implementation of the lattice Boltzmann method on large clusters of graphic processing units”, Comput. Sc. and Technol., 57:7 (2012), 707–715
[8] Yudin I. P., Perepelkin E. E., “Usage of the parallel computations on graphical processors in investigation of transport property of the ion beam channel with the volume charge”, Vestn. S.-Peterb. un-ta, ser. 10: prikladnaja matematika, informatika, processi upravlenija, 2012, no. 3, 103–112
[9] Raba N. O., “Creation and realization of the computation algorithm for cloud coagulation with mixed phase using the CUDA technology”, Vestn. S.-Peterb. un-ta, ser. 10: prikladnaja matematika, informatika, processi upravlenija, 2011, no. 4, 94–104
[10] Velivelli A. C., Bryden K. M., “Parallel peformance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger's equation”, Physica A, 362 (2006), 139–145 | DOI
[11] Gugushvili I. V., Evstigneev N. M., “On some results for various methods for modelling of the hydrodynamics of immiscible fluid with free surface on the graphical processors”, Elektron. nauch. zhurn. Kurskogo gos. un-ta, uchenye zapiski, 2010, no. 4, 15–23
[12] Schreiber M., Neumann P., Zimmer S., Bungartza H. J., “Free-surface lattice-Boltzmann simulation on many-core architectures”, Procedia Comput. Sc., 4 (2011), 984–993 | DOI
[13] Zhao Z., Huang P., Li Y., Li J., “A lattice Boltzmann method for viscous free surface waves in two dimensions”, Intern. J. for Numer. Meth. in Fluids, 71 (2013), 223–248 | DOI | MR
[14] Pan C., Luo L. S., Miller C. T., “Lattice Boltzmann model for incompressible flows through porous media”, Phys. Rev. E, 66 (2002), 036304-1–036304-9 | DOI
[15] Chetverushkin B. N., Kinetic schemes in gas dynamics, Izd-vo of Moscow State University, M., 1999, 232 pp.
[16] Abe T., “Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation”, J. of Comput. Phys., 131:1 (1997), 241–246 | DOI | Zbl
[17] Yanenko N. N., Fractional step method fot the multidimensional problems of mathematical physics, Nauka, Novosibirsk, 1967, 197 pp.
[18] He X., Doolen G. D., Clark T., “Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier–Stokes equations”, J. of Comput. Phys., 179 (2002), 439–451 | DOI | MR | Zbl
[19] Asinari P., Ohwada T., Chiavazzo E., Rienzo A. F., “Link-wise artificial compressibility method”, J. of Comput. Phys., 231 (2012), 5109–5143 | DOI | MR | Zbl
[20] Ohwada T., Asinari P., “Artificial compressibility method revisited: asymptotic numerical method for the incompressible Navier–Stokes equations”, J. of Comput. Phys., 229 (2010), 1698–1723 | DOI | MR | Zbl
[21] Chorin A. J., “A numerical method for solving incompressible viscous flow problems”, J. of Comput. Phys., 2 (1967), 12–26 | DOI | Zbl
[22] Sterling J. D., Chen S., “Stability analysis of lattice Boltzmann methods”, J. of Comput. Phys., 123 (1996), 196–206 | DOI | Zbl
[23] Krivovichev G. V., “On the stability of the kinetic lattice Boltzmann scheme for the computation of planar flows”, Vychislitel'nye metody i programmirovanie, 12:1 (2011), 194–204
[24] Krivovichev G. V., “Investigation of the stability of explicit finite-difference based lattice Boltzmann schemes”, Vychislitel'nye metody i programmirovanie, 13:1 (2012), 332–340
[25] Semenov S. A., Krivovichev G. V., “Numerical investigation of the approaches to boundary conditions realization in the lattice Boltzmann method”, Processy upravleniia i ustoichivost', Trudy 43 mezhdunarodnoi nauchnoi konferentsii, eds. A. S. Eremin, N. V. Smirnov, Izdatel'skii dom S.-Peterb. un-ta, S.-Petersburg, 2012, 196–201
[26] d'Humieres D., Ginzburg I., Krafczyk M., Lallemand P., Luo L. S., “Multiple-relaxation-time lattice Boltzmann models in three dimensions”, Philos. Transact. of Royal Soc. of London A, 360 (2002), 437–451 | DOI | MR
[27] Krivovichev G. V., “On the usage of the integro-interpolational method for the construction of single-step lattice Boltzmann schemes”, Vychislitel'nye metody i programmirovanie, 13:1 (2012), 25–34 | Zbl
[28] Roache P. J., Computational Fluid Dynamics, Per. s angl. V. A. Gucshina, V. Ya. Myatnitskogo, ed. P. I. Chushkin, Mir, M., 1972, 612 pp.
[29] Nourgaliev R. R., Dinh T. N., Theofanous T. G., Joseph D., “The lattice Boltzmann equation method: theoretical interpretation, numerics and implications”, Intern. J. of Multip. Flow, 29 (2003), 117–169 | DOI | Zbl
[30] Martinez D. O., Matthaeus W. H., Chen S., Montgomery D. C., “Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics”, Phys. of Fluids, 6:3 (1994), 1285–1298 | DOI | Zbl
[31] Samarskii A. A., Vabischevich P. N., Computational heat conduction, Knizhnyi dom “Librokom”, M., 2009, 784 pp.
[32] Samarskii A. A., Vaboschevich P. N., Numerical methods for the convection-diffusion problems, Knizhnyi dom “Librokom”, M., 2009, 248 pp.
[33] Blaak R., Sloot P. M. A., “Lattice dependence of reaction-diffusion in lattice Boltzmann modeling”, Comput. Phys. Commun., 129 (2000), 256–266 | DOI | MR | Zbl
[34] Wang J., Wang M., Li Z., “Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels”, J. of Coll. and Interf. Sc., 296 (2006), 729–736 | DOI
[35] Wolf-Gladrow D. A., “A lattice Boltzmann equation for diffusion”, J. of Stat. Phys., 79:5–6 (1995), 1023–1032 | DOI | Zbl
[36] Kireev V. I., Panteleev A. V., Numerical methods in problems and examples, Vyschaiia shkola, M., 2004, 480 pp.
[37] Chen S., Tolke J., Krafczyk M., “A new method for the numerical solution of vorticity — streamfunction formulations”, Comput. Meth. in Appl. Mech. and Engineer., 198 (2008), 367–376 | DOI | Zbl
[38] Ghia U., Ghia K. N., Shin C. T., “High-Re solutions for incompressible flow using the Navier–Stokes equations and multigrid method”, J. Comp. Physics, 48 (1982), 387–411 | DOI | Zbl
[39] Le Coupanec E., Verschaeve J. C. G., “A mass conserving boundary condition for the lattice Boltzmann method for tangentially moving walls”, Math. and Comput. in Simulation, 81:12 (2011), 2632–2645 | DOI | MR | Zbl
[40] Semin L. G., Shapeev V. P., “Collocation and least-squares methods for the Navier–Stokes equations”, Vychislitel'nye tehnologii, 3:3 (1998), 72–84 | MR
[41] Hussein M. A., Becker T., “Numerical modelling of shear and normal stress of micro-porous ceramics for stimulated in-vitro cultivation of bone cells”, Microfluid. and Nanofluid., 8 (2010), 665–675 | DOI