On solution of some differential equations of mechanics by operating method
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

Application of an operating method to the solution of Cauchy problem for heterogeneous differential equation of $n$-degree is considered. The formula of this aquation general integral is obtained. Тhe operating method is also used for solving boundary-value problems of mechanics of solids. It appears very effective in analytical examination of bend and stability of elastic-prismatic rods. Bibliogr. 6. Il. 2.
Keywords: differential equation, operating method, Cauchy problem, boundary-value problems, bend and stability of rods.
@article{VSPUI_2013_4_a0,
     author = {Yu. M. Dahl},
     title = {On solution of some differential equations of mechanics by operating method},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {3--9},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a0/}
}
TY  - JOUR
AU  - Yu. M. Dahl
TI  - On solution of some differential equations of mechanics by operating method
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 3
EP  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a0/
LA  - ru
ID  - VSPUI_2013_4_a0
ER  - 
%0 Journal Article
%A Yu. M. Dahl
%T On solution of some differential equations of mechanics by operating method
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 3-9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a0/
%G ru
%F VSPUI_2013_4_a0
Yu. M. Dahl. On solution of some differential equations of mechanics by operating method. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2013), pp. 3-9. http://geodesic.mathdoc.fr/item/VSPUI_2013_4_a0/