Plane problems of concentrated forces for half-linear material
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 83-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The plane problems of nonlinear elasticity (the plane strains and the plane stresses) are considered for a plane and a half-plane under the action of concentrated forces. Mechanical properties are described by a half-linear material model. Using a harmonious material model has allowed to apply the methods of theory complex functions and receive exact analytical global solutions of problems, including: concentrated force on the interface of materials of a two-componential plane and concentrated force on the border of a half-plane (problems of Flamant and Michel). From global solutions asymptotic stresses and displacements in a vicinity of a force application point are constructed. The comparison of the results obtained with the solutions of Flamant and Michel linear problems has shown that stresses and displacements have identical singularities in a vicinity of a force application point $-1/r$, displacements have logarithmic singularity $-\ln r$. At the same time there are also principal differences: in linear problems only radial stresses are distinct from zero, and in nonlinear and shear stresses they are not equal to zero. Besides, factors at singular members in nonlinear and linear problems are different. Bibliogr. 10.
Keywords: plane problems, concentrated force, half-linear material, complex functions method, asymptotic series.
@article{VSPUI_2013_3_a8,
     author = {V. M. Mal{\textquoteright}kov and Yu. V. Mal'kova},
     title = {Plane problems of concentrated forces for half-linear material},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {83--96},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a8/}
}
TY  - JOUR
AU  - V. M. Mal’kov
AU  - Yu. V. Mal'kova
TI  - Plane problems of concentrated forces for half-linear material
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 83
EP  - 96
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a8/
LA  - ru
ID  - VSPUI_2013_3_a8
ER  - 
%0 Journal Article
%A V. M. Mal’kov
%A Yu. V. Mal'kova
%T Plane problems of concentrated forces for half-linear material
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 83-96
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a8/
%G ru
%F VSPUI_2013_3_a8
V. M. Mal’kov; Yu. V. Mal'kova. Plane problems of concentrated forces for half-linear material. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 83-96. http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a8/

[1] Mal'kov V. M., Mal'kova Ju. V., “Investigation of nonlinear Flamant's problem”, Izv. RAN. Mehanika tverdogo tela, 2006, no. 5, 68–78

[2] Mal'kov V. M., Mal'kova Ju. V., “Analysis of stresses singularity on nonlinear Flamant's problem for some material models”, Prikladnaja matematika i mehanika, 72:3 (2008), 453–462 | MR

[3] Lur'e A. I., Theory of Elasticity, Nauka, M., 1970, 940 pp.

[4] Chernyh K. F., Litvinenkova Z. N., Theory of large elastic deformations, Izd-vo Leningr. un-ta, Leningrad, 1988, 256 pp.

[5] Mal'kov V. M., Mal'kova Ju. V., “Plane problems of elasticity for half-linear material”, Vestnik S.-Peterb. un-ta, ser. 1: matematika, mehanika, astronomija, 2012, no. 3, 93–106

[6] Mal'kov V. M., The bases of mathematical non-linear theory of elasticity, Izd-vo S.-Peterb. gos. un-ta, S.-Petersburg, 2002, 216 pp.

[7] Novozhilov V. V., Theory of elasticity, Sudpromgiz, Leningrad, 1958, 370 pp.

[8] Mushelishvili N. I., Some basic problems of mathematical elasticity, Nauka, M., 1966, 708 pp.

[9] Mal'kov V. M., Introduction in non-linear elasticity, Izd-vo S.-Peterb. gos. un-ta, S.-Petrsburg, 2010, 276 pp.

[10] Timoshenko S. P., Gud'er Dzh., Theory of Elasticity, Nauka, M., 1957, 576 pp.