On a exhaustible resource extraction differential game with random terminal instants
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 73-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate a noncooperative differential game in which two firms compete in extracting a unique nonrenewable resource over time. The respective times of extraction are random and after the first firm finishes extraction, the remaining one continues and gets the final reward for winning. The expected payoffs for each player are obtained in the standard form for the differential games. The Hamilton–Jacobi–Bellman equations for the feedback information structure are determined. An example is introduced where the optimal feedback strategy, i. e. the optimal extraction rate, is calculated in a closed form. Bibliogr. 12.
Keywords: differential game, exhaustible resources, random terminal time, Hamilton–Jacobi–Bellman equation.
@article{VSPUI_2013_3_a7,
     author = {S. Yu. Kostyunin and A. Palestini and E. V. Shevkoplyas},
     title = {On a exhaustible resource extraction differential game with random terminal instants},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {73--82},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a7/}
}
TY  - JOUR
AU  - S. Yu. Kostyunin
AU  - A. Palestini
AU  - E. V. Shevkoplyas
TI  - On a exhaustible resource extraction differential game with random terminal instants
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 73
EP  - 82
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a7/
LA  - ru
ID  - VSPUI_2013_3_a7
ER  - 
%0 Journal Article
%A S. Yu. Kostyunin
%A A. Palestini
%A E. V. Shevkoplyas
%T On a exhaustible resource extraction differential game with random terminal instants
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 73-82
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a7/
%G ru
%F VSPUI_2013_3_a7
S. Yu. Kostyunin; A. Palestini; E. V. Shevkoplyas. On a exhaustible resource extraction differential game with random terminal instants. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 73-82. http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a7/

[1] Dockner E., Jørgensen S., Van Long N., Sorger G., Differential games in economics and management science, Cambridge University Press, Cambridge, 2000, 396 pp. | MR | Zbl

[2] Jørgensen S., Zaccour G., “Developments in Differential Game Theory and Numerical Methods: Economic and Management Applications”, Computational Management Science, 4:2 (2007), 159–182 | DOI | MR

[3] Petrosjan L. A., Murzov N. V., “Game-theoretic problems of mechanics”, Litovsk. mat. sb., VI:3 (1966), 423–433

[4] Petrosjan L. A., Shevkoplyas E. V., “Cooperative games with random duration”, Vestnik S.-Peterb. un-ta, ser. 1: matematica, mechanica, astronomiya, 2000, no. 4, 18–23 | MR | Zbl

[5] Kostyunin S. Y., Shevkoplyas E. V., “On simplification of integral payoff in the differential games with random duration”, Vestnik S.-Peterb. un-ta, ser. 10: prikladnaja matematica, informatika, processy unpravlenija, 2011, no. 4, 47–56

[6] Marin-Solano J., Shevkoplyas E., “Non-constant discounting in differential games with random time horizon”, Automatica, 47:12 (2011), 2626–2638 | DOI | MR | Zbl

[7] Pliska S. R., Ye J., “Optimal life insurance purchase and consumption/investment under uncertain lifetime”, Journal of Banking Finance, 31:5 (2007), 1307–1319 | DOI

[8] Giri B. C., Goyal S. K., “Recent trends in modeling of deteriorating inventory”, European Journal of Operational Research, 134:1 (2001), 1–16 | DOI | MR | Zbl

[9] Perry D., Stadje W., “Function space integration for annuities”, Insurance: Mathematics and Economics, 29:1 (2001), 73–82 | DOI | MR | Zbl

[10] Kostyunin S., Palestini A., Shevkoplyas E., “Differential game of resource extraction with random time horizon and different hazard functions”, Control Processes and Stability, Proc. of XLII intern. conference, eds. A. S. Eremin, N. V. Smirnov, Saint-Petersburg State University Publishing House, St.-Petersburg, 2011, 571–576

[11] Rubio S., “On Coincidence of Feedback Nash Equilibria and Stackelberg Equilibria in Economic Applications of Differential Games”, Journal of Optimization Theory and Applications, 128:1 (2006), 203–221 | DOI | MR

[12] Shevkoplyas E., “The Hamilton–Jacobi–Bellman equation for a class of differential games with random duration”, Matematicheskaja teorija igr i ejyo prilozhenija, 1:2 (2009), 98–118 | Zbl