Generalized solutions of a boundary value problem for thermal conductivity equation on a graph
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 39-47
Voir la notice de l'article provenant de la source Math-Net.Ru
Generalized solutions of a boundary value problem for thermal conductivity equation on an arbitrary graph are considered. Analogues of corresponding Sobolev spaces which are dense sets in the space of square-integrable functions are constructed. The theorem of unique solvability of a boundary-value problem is proved. The algorithm of determining boundary control in the problem of translating a differential system from the initial state to the desired final one is presented. Bibliogr. 4.
Keywords:
boundary value problem on a graph, generalized solutions, a theorem on unique solvability, boundary control.
@article{VSPUI_2013_3_a4,
author = {A. S. Volkova},
title = {Generalized solutions of a boundary value problem for thermal conductivity equation on a graph},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {39--47},
publisher = {mathdoc},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a4/}
}
TY - JOUR AU - A. S. Volkova TI - Generalized solutions of a boundary value problem for thermal conductivity equation on a graph JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2013 SP - 39 EP - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a4/ LA - ru ID - VSPUI_2013_3_a4 ER -
%0 Journal Article %A A. S. Volkova %T Generalized solutions of a boundary value problem for thermal conductivity equation on a graph %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2013 %P 39-47 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a4/ %G ru %F VSPUI_2013_3_a4
A. S. Volkova. Generalized solutions of a boundary value problem for thermal conductivity equation on a graph. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 39-47. http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a4/