Generalized solutions of a boundary value problem for thermal conductivity equation on a graph
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 39-47
Cet article a éte moissonné depuis la source Math-Net.Ru
Generalized solutions of a boundary value problem for thermal conductivity equation on an arbitrary graph are considered. Analogues of corresponding Sobolev spaces which are dense sets in the space of square-integrable functions are constructed. The theorem of unique solvability of a boundary-value problem is proved. The algorithm of determining boundary control in the problem of translating a differential system from the initial state to the desired final one is presented. Bibliogr. 4.
Keywords:
boundary value problem on a graph, generalized solutions, a theorem on unique solvability, boundary control.
@article{VSPUI_2013_3_a4,
author = {A. S. Volkova},
title = {Generalized solutions of a boundary value problem for thermal conductivity equation on a graph},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {39--47},
year = {2013},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a4/}
}
TY - JOUR AU - A. S. Volkova TI - Generalized solutions of a boundary value problem for thermal conductivity equation on a graph JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2013 SP - 39 EP - 47 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a4/ LA - ru ID - VSPUI_2013_3_a4 ER -
%0 Journal Article %A A. S. Volkova %T Generalized solutions of a boundary value problem for thermal conductivity equation on a graph %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2013 %P 39-47 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a4/ %G ru %F VSPUI_2013_3_a4
A. S. Volkova. Generalized solutions of a boundary value problem for thermal conductivity equation on a graph. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 39-47. http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a4/
[1] Yurko V. A., Introduction to the theory of inverse spectral problems, Fizmatlit, M., 2007, 384 pp. | Zbl
[2] Volkova A. S., “Generalized solution of the boundary value problem for elliptic equations on a graph”, News of the Institute of mathematics and Informatics of the Udmurt State University, 2012, no. 1, 28–29
[3] Volkova A. S., “Generalized solution for elliptic equations in problems of boundary control on a geometric graph”, Processes control and stability, Works of the 43rd Intern. conference of graduate students and students, eds. A. S. Eremin, N. V. Smirnov, Izdat. Dom S.-Peterb. gos. un-ta, S.-Peterburg, 2012, 14–20
[4] Ladyzhenskaya O. A., The boundary value problems of mathematical physics, Nauka, M., 1973, 407 pp. | MR