Geometry of singular curves for one class of velocity
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 157-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Both numerical and analytical algorithms for approximate solutions of differential games and control problems are proposed using convex and nonsmooth analyze methods. Algorithms of optimal result function calculation in the velocity problem with circle vectogramme are considered. These algorithms are based on symmetry sets. Smooth properties of these sets are studied, the equation of tangent in their regular points are written. Application of the results investigated for numerical construction of generalized (minimax) solutions of Dirichlet boundary problems for Hamilton type PDE is suggested. The examples of velocity problems are calculated. Bibliogr. 23. Il. 5.
Keywords: velocity problem, singular curve, nonsmoothness.
Mots-clés : tangent
@article{VSPUI_2013_3_a15,
     author = {V. N. Ushakov and A. A. Uspenskiy and P. D. Lebedev},
     title = {Geometry of singular curves for one class of velocity},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {157--167},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a15/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. A. Uspenskiy
AU  - P. D. Lebedev
TI  - Geometry of singular curves for one class of velocity
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 157
EP  - 167
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a15/
LA  - ru
ID  - VSPUI_2013_3_a15
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. A. Uspenskiy
%A P. D. Lebedev
%T Geometry of singular curves for one class of velocity
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 157-167
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a15/
%G ru
%F VSPUI_2013_3_a15
V. N. Ushakov; A. A. Uspenskiy; P. D. Lebedev. Geometry of singular curves for one class of velocity. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 157-167. http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a15/

[1] Krasovskii N. N., “Game Problems of Dynamics”, Izv. AN SSSR. Techn. Cybernetics, 1969, no. 5, 3–12 | MR

[2] Krasovskii N. N., Subbotin A. I., Positional Differential Games, Nauka, M., 1974, 456 pp. | MR | Zbl

[3] Subbotin A. I., Generalized Solutions of First-Order PDEs, Institute of Computer Technologies, M.–Izhevsk, 2003, 336 pp.

[4] Isaacs R., Differential Games, Per. s angl. V. I. Arkina, E. N. Simaka, ed. M. I. Zelikin, Mir, M., 1967, 479 pp. | MR

[5] Slyusarev G. G., Geometrical Optics, Izd-vo Akad. Nauk SSSR, M., 1946, 332 pp. | MR

[6] Kruzhkov S. N., “Generalized Solutions of the Hamilton–Jacobi Eikonal-Type Equation”, Mat. Sb., 98:3 (1974), 450–493

[7] Rashevskii P. K., A Course in Differential Geometry, Editorial, M., 2003, 432 pp.

[8] Leichtweiss K. von, Konvexe Nengene (Convex Sets), Per. s nem. V. A. Zalgallera, T. V. Xachaturova, ed. V. A. Zalgaller, Nauka, M., 1985, 335 pp. | MR

[9] Bruce J. W., Giblin P. J., Curves and Singularities: A Geometrical Introduction to Singularity Theory, Per. s angl. A. I. Sherbak, ed. V. I. Arnold, Mir, M., 1988, 262 pp. | MR

[10] Lebedev P. D., Uspenskii A. A., “Geometry and Asymptotics of Wavefronts”, Russian Mathematics. Iz. VUZ, 2008, no. 3 (550), 27–37 | MR | Zbl

[11] Lebedev P. D., Uspenskii A. A., “Derivatives Set of Local Diffeomorphisms in the Study of Wavefront Evolution”, Trudi IMM UrO RAN, 16:1 (2010), 171–186 | MR

[12] Lebedev P. D., Uspenskii A. A., “Singularities' of optimal-time function in one class of optimal-time control problems construction algorithms”, Vestnik Udmurtsk. un-ta, ser. Mathematics, Mechanics, Computer Science, 2010, no. 3, 30–41

[13] Lebedev P. D., Uspenskii A. A., Ushakov V. N., “Minimax Solution of Eikonal Type Equation Construction”, Trudi IMM UrO RAN, 16:1 (2008), 182–191 | MR | Zbl

[14] Lebedev P. D., Uspenskii A. A., “Construction of the optimal outcome function for a time-optimal problem on the basis of a symmetry set”, Avtomatika i Telemechanica, 2009, no. 7, 50–57 | MR | Zbl

[15] Lebedev P. D., Uspenskii A. A., “Analytical and Computing Constructing of Optimal Result Function in One Class of Velocity Problems”, Applied Mathem. and Informaitcs. Papers of VMK Faculty of Moscow un-ta, 2007, no. 27, 65–79 | Zbl

[16] Demyanov V. F., Rubinov A. M., Foundations of Nonsmooth Analysis and Quasi-Differential Calculus, Nauka, M., 1990, 432 pp. | MR

[17] Demyanov V. F., Vasilyev L. V., Nondifferentiable Optimization, Nauka, M., 1981, 384 pp. | MR

[18] Sedykh V. D., “On the topology of symmetry sets of smooth submanifolds in $\mathbb{R}^k$”, Advanced Studies in Pure Mathematics Singularity Theory and Its Applications, 43 (2006), 401–419 | MR | Zbl

[19] Sedykh V. D., “Some invariants of convex manifolds”, Workshop, on Real and Complex Singularities (Sao Carlos, 1992), Mat. Contemp., 5, 1993, 187–198 | MR | Zbl

[20] Arnold V. I., Singularities of Caustics and Wave Fronts, Fazis, M., 1996, 334 pp. | MR

[21] Arnold V. I., “Plane curves, their invariants, perestroikas and classiffications”, Trudy Matem. in-ta imeni V. A. Steklova, 209, 1995, 14–64 | MR

[22] Mestetskiy L. M., Continuous morphology of binary images. Figures, skeletons, circular, Fismatlit, M., 2009, 288 pp.

[23] Uspenskii A. A., Ushakov V. N., Malev A. G., “Estimate of the stability defect for a positional absorption set subjected to discriminant transformations”, Trudi IMM UrO RAN, 17:2 (2011), 209–224