@article{VSPUI_2013_3_a12,
author = {D. W. K. Yeung},
title = {Optimal consumption under an uncertain inter-temporal budget: stochastic dynamic {Slutsky} equations},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {121--141},
year = {2013},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a12/}
}
TY - JOUR AU - D. W. K. Yeung TI - Optimal consumption under an uncertain inter-temporal budget: stochastic dynamic Slutsky equations JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2013 SP - 121 EP - 141 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a12/ LA - en ID - VSPUI_2013_3_a12 ER -
%0 Journal Article %A D. W. K. Yeung %T Optimal consumption under an uncertain inter-temporal budget: stochastic dynamic Slutsky equations %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2013 %P 121-141 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a12/ %G en %F VSPUI_2013_3_a12
D. W. K. Yeung. Optimal consumption under an uncertain inter-temporal budget: stochastic dynamic Slutsky equations. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 121-141. http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a12/
[1] “On the Theory of the Budegt of the Consumer”, Reading in Price Theory, eds. G. Stigler, K. Boulding, The Association by Richard D. Irwin, Inc., Homewood, IL, 1952
[2] Allen R. G. D., “Professor Slutsky's Theory of Consumers' Choice”, Rev. Econ. Stud., 3 (1936), 120–129 | DOI
[3] Allen R. G. D., “The Work of Eugen Slutsky”, Econometrica, 18 (1950), 209–216 | DOI | MR | Zbl
[4] Hicks J. R., Allen R. G. D., “A Reconsideration of the Theory of Value. 1; 2”, Economica. New Series, 1 (1934), 52–76 ; 196–219 | DOI
[5] Schultz H., “Interrelations of Demand, Price, and Income”, J. Polit. Econ., 43 (1935), 433–481 | DOI
[6] Fischer S., “Assets, Contingent Commodities, and The Slutsky Equations”, Econometrica, 40 (1972), 371–385 | DOI | MR | Zbl
[7] Epps T. W., “Wealth Effects and Slutsky Equations for Assets”, Econometrica, 43 (1975), 301–303 | DOI | Zbl
[8] Bertsekas D. P., Shreve S. E., Stochastic optimal control: The discrete-time case, Athena Scientific, New York, 1996, 360 pp. | MR | Zbl
[9] Puterman M. L., Markov Decision processes: Discrete stochastic dynamic programming, John Wiley Sons, New York, 1994, 500 pp. | MR | Zbl
[10] Yeung D. W. K., Petrosyan L. A., “Subgame consistent solutions for cooperative stochastic dynamic games”, J. Optim. Theory Appl., 145 (2010), 579–596 | DOI | MR | Zbl
[11] Bellman R., Dynamic programming, Princeton University Press, Princeton, 1957, 420 pp. | MR | Zbl
[12] Cheung M. T., Yeung D. W. K., Microeconomic analytics, Prentice Hall, New York, 1995, 832 pp.
[13] Roy R., “La distribution du revenu entre les divers biens”, Econometrica, 15 (1947), 205–225 | DOI | Zbl
[14] Varian H., Microeconomic Analysis, 3rd ed., W. W. Norton, New York, 1992, 321 pp.
[15] Hall R. E., “Intertemporal substitution in consumption”, J. Polit. Econ., 96 (1988), 339–357 | DOI
[16] Dutkowsky D. H., Foote W. G., “Intertemporal substitution in macroeconomics: consumption, labour supply, and money demand”, The review of economics and statistics, 74 (1992), 333–338 | DOI
[17] Bank P., Riedel F., “Optimal consumption choice with intertemporal substitution”, Ann. Appl. Probab., 11 (2001), 750–788 | DOI | MR | Zbl