On a strong graphical law of large numbers for random semicontinuous mappings
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 102-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we establish a strong graphical law of large numbers (LLN) for random outer semicontinuous mappings, providing conditions when graphs of sample average mappings converge to the graph of the expectation mapping with probability one. This result extends a known LLN for compact valued random sets to random uniformly bounded (by an integrable function) set valued mappings. We give also an equivalent formulation for the graphical LLN by means of some fattened mappings. The study is motivated by applications of the set convergence and the graphical LLN in stochastic variational analysis, including approximation and solution of stochastic generalized equations, stochastic variational inequalities and stochastic optimization problems. The nature of these applications consists in sample average approximation of the inclusion mappings, application of the graphical LLN and obtaining from here a graphical approximation of the set of solutions. Bibliogr. 23.
Keywords: random sets, random set-valued mappings, strong law of large numbers, graphical convergence.
@article{VSPUI_2013_3_a10,
     author = {V. I. Norkin and R. J.-B. Wets},
     title = {On a strong graphical law of large numbers for random semicontinuous mappings},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {102--111},
     year = {2013},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a10/}
}
TY  - JOUR
AU  - V. I. Norkin
AU  - R. J.-B. Wets
TI  - On a strong graphical law of large numbers for random semicontinuous mappings
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 102
EP  - 111
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a10/
LA  - en
ID  - VSPUI_2013_3_a10
ER  - 
%0 Journal Article
%A V. I. Norkin
%A R. J.-B. Wets
%T On a strong graphical law of large numbers for random semicontinuous mappings
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 102-111
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a10/
%G en
%F VSPUI_2013_3_a10
V. I. Norkin; R. J.-B. Wets. On a strong graphical law of large numbers for random semicontinuous mappings. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 102-111. http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a10/

[1] Artstein Z., Vitale R. A., “A strong law of large numbers for random compact sets”, Ann. Probab., 3 (1975), 879–882 | DOI | MR | Zbl

[2] Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, 85, 1979, 113–128 | DOI | MR | Zbl | Zbl

[3] Artstein Z., Hart S., “Law of large numbers for random sets and allocation processes”, Math. Oper. Res., 6 (1981), 485–492 | DOI | MR | Zbl

[4] Rockafellar R. T., Wets R. J. B., Variational Analysis. Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1998 ; 3rd, 2009, 734 pp. | MR | Zbl

[5] Richter H., “Verallgemeinerung eines in der {Statistik} benötigten {Satzes} der {Masstheorie}”, Math. Ann., 150 (1963), 85–90 ; 440–441 | DOI | MR | Zbl

[6] Aumann R. J., “Integrals of set-valued functions”, J. Math. Anal. Appl., 12 (1965), 1–12 | DOI | MR | Zbl

[7] Taylor R. L., Inoue H., “Laws of large numbers for random sets”, Random Sets, eds. J. Goutsias e. a., Springer-Verlag, New York, 1997, 347–366 | MR

[8] Molchanov I., Theory of Random Sets, Springer-Verlag, London, 2005, 488 pp. | MR | Zbl

[9] Li S., Yang W., “Capacities, set-valued random variables and laws of large numbers for capacities”, Integrated Uncertainty Management and Applications, AISC, 68, eds. V.-N. Huynh e. a., Springer, Berlin, 2010, 127–138 | Zbl

[10] Shapiro A., Xu H., “Uniform law of large numbers for set-valued mappings and subdifferentials of random functions”, J. Math. Anal. Appl., 325 (2007), 1390–1399 | DOI | MR | Zbl

[11] Terán P., “On a uniform law of large numbers for random sets and sub-differentials of random functions”, Statist. Probab. Lett., 78 (2008), 42–49 | DOI | MR | Zbl

[12] Terán P., Molchanov I., “The law of large numbers in a metric space with a convex combination operation”, J. Theoret. Probab., 19 (2006), 875–898 | DOI | MR | Zbl

[13] Attouch H., Wets R. J.-B., “Epigraphical processes: Law of large numbers for random lsc functions”, Séminaire d'Analyse Convexe (Montpellier, 1990), 13.1–13.29 | MR | Zbl

[14] King A., Wets R., “Epi-consistency of convex stochastic programs”, Stochastics and Stochastics Reports, 34 (1990), 83–92 | MR

[15] Artstein Z., Wets R., “Consistency of minimizers and the {SLLN} for stochastic programs”, J. Convex Anal., 2 (1995), 1–17 | MR | Zbl

[16] Hess C., “Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator”, Ann. Probab., 24 (1996), 1298–1315 | MR | Zbl

[17] Shapiro A., Xu H., “Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation”, Optimization, 57 (2008), 395–418 | DOI | MR | Zbl

[18] Xu H., Meng F., “Convergence analysis of sample average approximation methods for a class of stochastic mathematical programs with equality constraints”, Math. Oper. Res., 32 (2007), 648–668 | DOI | MR | Zbl

[19] Ralph D., Xu H., “Convergence of stationary points of sample average two-stage stochastic programs: a generalized equation approach”, Math. Oper. Res., 36 (2011), 568–592 | DOI | MR | Zbl

[20] Kolmogorov A. N., Fomin S. V., Introductory Real Analysis, Dover Publications, New York, 1975, 403 pp. | MR

[21] Aubin J.-P., Ekeland I., Applied Nonlinear Analysis, Wiley, New York, 1984, 518 pp. | MR | Zbl

[22] Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, 580, Springer-Verlag, Berlin etc., 1977, 278 pp. | MR | Zbl

[23] Kibernetika, 1986, no. 2, 66–71 ; 76 | DOI | MR | Zbl