@article{VSPUI_2013_3_a10,
author = {V. I. Norkin and R. J.-B. Wets},
title = {On a strong graphical law of large numbers for random semicontinuous mappings},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {102--111},
year = {2013},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a10/}
}
TY - JOUR AU - V. I. Norkin AU - R. J.-B. Wets TI - On a strong graphical law of large numbers for random semicontinuous mappings JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2013 SP - 102 EP - 111 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a10/ LA - en ID - VSPUI_2013_3_a10 ER -
%0 Journal Article %A V. I. Norkin %A R. J.-B. Wets %T On a strong graphical law of large numbers for random semicontinuous mappings %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2013 %P 102-111 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a10/ %G en %F VSPUI_2013_3_a10
V. I. Norkin; R. J.-B. Wets. On a strong graphical law of large numbers for random semicontinuous mappings. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 102-111. http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a10/
[1] Artstein Z., Vitale R. A., “A strong law of large numbers for random compact sets”, Ann. Probab., 3 (1975), 879–882 | DOI | MR | Zbl
[2] Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, 85, 1979, 113–128 | DOI | MR | Zbl | Zbl
[3] Artstein Z., Hart S., “Law of large numbers for random sets and allocation processes”, Math. Oper. Res., 6 (1981), 485–492 | DOI | MR | Zbl
[4] Rockafellar R. T., Wets R. J. B., Variational Analysis. Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1998 ; 3rd, 2009, 734 pp. | MR | Zbl
[5] Richter H., “Verallgemeinerung eines in der {Statistik} benötigten {Satzes} der {Masstheorie}”, Math. Ann., 150 (1963), 85–90 ; 440–441 | DOI | MR | Zbl
[6] Aumann R. J., “Integrals of set-valued functions”, J. Math. Anal. Appl., 12 (1965), 1–12 | DOI | MR | Zbl
[7] Taylor R. L., Inoue H., “Laws of large numbers for random sets”, Random Sets, eds. J. Goutsias e. a., Springer-Verlag, New York, 1997, 347–366 | MR
[8] Molchanov I., Theory of Random Sets, Springer-Verlag, London, 2005, 488 pp. | MR | Zbl
[9] Li S., Yang W., “Capacities, set-valued random variables and laws of large numbers for capacities”, Integrated Uncertainty Management and Applications, AISC, 68, eds. V.-N. Huynh e. a., Springer, Berlin, 2010, 127–138 | Zbl
[10] Shapiro A., Xu H., “Uniform law of large numbers for set-valued mappings and subdifferentials of random functions”, J. Math. Anal. Appl., 325 (2007), 1390–1399 | DOI | MR | Zbl
[11] Terán P., “On a uniform law of large numbers for random sets and sub-differentials of random functions”, Statist. Probab. Lett., 78 (2008), 42–49 | DOI | MR | Zbl
[12] Terán P., Molchanov I., “The law of large numbers in a metric space with a convex combination operation”, J. Theoret. Probab., 19 (2006), 875–898 | DOI | MR | Zbl
[13] Attouch H., Wets R. J.-B., “Epigraphical processes: Law of large numbers for random lsc functions”, Séminaire d'Analyse Convexe (Montpellier, 1990), 13.1–13.29 | MR | Zbl
[14] King A., Wets R., “Epi-consistency of convex stochastic programs”, Stochastics and Stochastics Reports, 34 (1990), 83–92 | MR
[15] Artstein Z., Wets R., “Consistency of minimizers and the {SLLN} for stochastic programs”, J. Convex Anal., 2 (1995), 1–17 | MR | Zbl
[16] Hess C., “Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator”, Ann. Probab., 24 (1996), 1298–1315 | MR | Zbl
[17] Shapiro A., Xu H., “Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation”, Optimization, 57 (2008), 395–418 | DOI | MR | Zbl
[18] Xu H., Meng F., “Convergence analysis of sample average approximation methods for a class of stochastic mathematical programs with equality constraints”, Math. Oper. Res., 32 (2007), 648–668 | DOI | MR | Zbl
[19] Ralph D., Xu H., “Convergence of stationary points of sample average two-stage stochastic programs: a generalized equation approach”, Math. Oper. Res., 36 (2011), 568–592 | DOI | MR | Zbl
[20] Kolmogorov A. N., Fomin S. V., Introductory Real Analysis, Dover Publications, New York, 1975, 403 pp. | MR
[21] Aubin J.-P., Ekeland I., Applied Nonlinear Analysis, Wiley, New York, 1984, 518 pp. | MR | Zbl
[22] Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, 580, Springer-Verlag, Berlin etc., 1977, 278 pp. | MR | Zbl