Extremum conditions in terms of generalized adjoint exhausters
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notion of exhauster from the works of B. N. Pshenichny, V. F. Demyanov, A. M. Rubinov devoted to the study of nonconvex functions. By means of these tools one can describe the optimality conditions, build the direction of descent and ascent. The introduction of generalized exhausters allowed to expand the class of functions under consideration. In the present work an attempts is made to get the minimum conditions in terms of generalized lower exhausters and conditions of the maximum in terms of generalized upper exhausters. The results are illustrated by examples. Bibliogr. 11.
Keywords: nonsmooth analysis, nondifferentiable optimization, adjoint generalized exhauster, extremum, strict extremum, necessary and sufficient conditions.
@article{VSPUI_2013_3_a0,
     author = {M. E. Abbasov},
     title = {Extremum conditions in terms of generalized adjoint exhausters},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {3--8},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a0/}
}
TY  - JOUR
AU  - M. E. Abbasov
TI  - Extremum conditions in terms of generalized adjoint exhausters
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 3
EP  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a0/
LA  - ru
ID  - VSPUI_2013_3_a0
ER  - 
%0 Journal Article
%A M. E. Abbasov
%T Extremum conditions in terms of generalized adjoint exhausters
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 3-8
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a0/
%G ru
%F VSPUI_2013_3_a0
M. E. Abbasov. Extremum conditions in terms of generalized adjoint exhausters. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 3-8. http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a0/

[1] Pschenichny B. N., Convex Analysis and Extremal Problems, Nauka, M., 1980, 320 pp. | MR | Zbl

[2] Demyanov V. F., Rubinov A. M., Constructive Nonsmooth Analysis, Approximation Optimization, v. 7, Peter Lang, Frankfurt am Main, 1995, 416 pp. | MR | Zbl

[3] Demyanov V. F., “Exhausters and convexificators — new tools in nonsmooth analysis, quasidifferentiability and related topics”, Nonconvex Optim. Appl., 43, Kluwer Acad. Publ., Dordrecht, 2000, 85–137 | MR | Zbl

[4] Demyanov V. F., Rubinov A. M., “Exhaustive families of approximations revisited, from convexity to nonconvexity”, Nonconvex Optim. Appl., 55, Kluwer Acad. Publ., Dordrecht, 2001, 43–50 | MR | Zbl

[5] Abbasov M. E., Demyanov V. F., “Extremum Conditions for a Nonsmooth Function in Terms of Exhausters and Coexhausters”, Proceedings of the Steklov Institute of Mathematics, 2010, S1–S10

[6] Demyanov V. F., Roschina V. A., “Optimality conditions in terms of upper and lower exhausters”, Optimization, 55 (2006), 525–540 | DOI | MR | Zbl

[7] Demyanov V. F., “Proper Exhausters and Coexhausters in Nonsmooth Analysis”, Optimization, 2012 | DOI | MR

[8] Demyanov V. F., “Exhausters of a positively homogeneous function”, Optimization, 45:1–4 (1999), 13–29 | DOI | MR | Zbl

[9] Demyanov V. F., Roshchina V. A., “Constrained Optimality Conditions in Terms of Proper and Adjoint Exhausters”, Appl. Comput. Math., 4:2 (2005), 114–124 | MR | Zbl

[10] Abbasov M. E., “Extremality conditions in terms of adjoint exhausters”, Vestnik S.-Peterb. un-ta, ser. 10: Applied mathematics, informatics, control processes, 2011, no. 2, 3–8

[11] Abbasov M. E., Demyanov V. F., “Proper and adjoint exhausters in Nonsmooth analysis: optimality conditions”, J. of Global Optimization, 56:2 (2013), 569–585 | DOI | MR | Zbl