Construction of the return trajectory to the neighborhood of the collinear libration point of the Sun–-Earth system
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2013), pp. 76-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Special type of maneuvering of a spacecraft in the Earth space is investigated. The type is associated with the return to the neighborhood of the collinear libration point $L_1$. The Hill problem of the circular restricted three body problem of the Sun–Earth system is considered. These trajectories are determined by the “hazard function” which is a special linear form of a phase coordinates. Resulting conditions of the return are used to construct the corrective control. An algorithm for construction of the “return trajectory” in the neighborhood of the collinear libration point is proposed. The results of the numerical integration are graphically illustrated. Bibliogr. 15. Il. 5.
Keywords: circular restricted three body problem, Hill problem, orbital controlled motion, collinear libration point, trajectory of the return.
@article{VSPUI_2013_2_a8,
     author = {D. V. Shymanchuk and A. S. Shmyrov},
     title = {Construction of the return trajectory to the neighborhood of the collinear libration point of the {Sun{\textendash}-Earth} system},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {76--85},
     year = {2013},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a8/}
}
TY  - JOUR
AU  - D. V. Shymanchuk
AU  - A. S. Shmyrov
TI  - Construction of the return trajectory to the neighborhood of the collinear libration point of the Sun–-Earth system
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 76
EP  - 85
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a8/
LA  - ru
ID  - VSPUI_2013_2_a8
ER  - 
%0 Journal Article
%A D. V. Shymanchuk
%A A. S. Shmyrov
%T Construction of the return trajectory to the neighborhood of the collinear libration point of the Sun–-Earth system
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 76-85
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a8/
%G ru
%F VSPUI_2013_2_a8
D. V. Shymanchuk; A. S. Shmyrov. Construction of the return trajectory to the neighborhood of the collinear libration point of the Sun–-Earth system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2013), pp. 76-85. http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a8/

[1] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[2] Farquhar R. W., The Control and Use of Libration-Point Satellites, Ph. D. Dissertation, Dept. of Aeronautics and Astronautics, Stanford University, Stanford, CA, 1968, 204 pp.

[3] Howell K. C., “Families of Orbits in the Vicinity of the Collinear Libration Points”, J. of the Astronautical Sciences, 49:4, January–March (2001), 107–125 | MR

[4] Shmyrov V. A., “Stabilizatsiya upravlyaemogo orbitalnogo dvizheniya kosmicheskogo apparata v okrestnosti kollinearnoi tochki libratsii $L_1$”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2005, no. 2, 193–199

[5] Shmyrov A. S., Shmyrov V. A., “Optimalnaya stabilizatsiya orbitalnogo dvizheniya KA v okrestnosti kollinearnoi tochki libratsii $L_1$”, Chetvertye Polyakhovskie chteniya: izbr. trudy, Izd-vo «VVM», SPb., 2006, 296–300

[6] Shmyrov A. S., Shmyrov V. A., “Ob asimptoticheskoi ustoichivosti po otnosheniyu k chasti peremennykh orbitalnogo dvizheniya kosmicheskogo apparata v okrestnosti kollinearnoi tochki libratsii”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2009, no. 4, 251–258

[7] Shimanchuk D. V., “Modelirovanie orbitalnogo upravlyaemogo dvizheniya kosmicheskogo apparata v okrestnosti kollinearnoi tochki libratsii $L_1$”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2010, no. 3, 86–92

[8] Shmyrov A. S., Shmyrov V. A., “Qualitative Properties of Controllable Orbital Motion in a Neighborhood of Collinear Libration Point”, Classical and celestial mechanics: selected papers, Wydawnictwo Collegium Mazovia, Siedlce, 2012, 149–157

[9] Hill G. W., “Researches in the Lunar Theory”, Amer. J. of Mathematics, 1 (1878), 5–26 ; 129–147; 245–260 | DOI | MR

[10] Davis D. C., Howell K. C., “Characterization of Trajectories Near the Smaller Primary in the Restricted Problem for Applications”, J. of Guidance, Control, and Dynamics, 35:1, January–February (2012), 116–128 | DOI

[11] Howell K. C., Pernicka H. J., “Numerical Determination of Lissajous Trajectories in the Restricted Three-Body Problem”, Celestial Mechanics, 41:1–4 (1988), 107–124

[12] Gómez G., Masdemont J., Simó C., “Lissajous orbits around halo orbits”, Advances in Astronautical Sciences, 95, 1997, 117–134 (AAS Paper 97–106)

[13] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1970, 332 pp. | MR

[14] Polyakhova E. N., “Dinamicheskie i astronomicheskie aspekty proekta razmescheniya solnechnogo ekrana v pervoi tochke libratsii”, Vestn. S.-Peterb. un-ta. Ser. 1: Matematika, mekhanika, astronomiya, 1993, no. 1 (1), 111–121

[15] Levantovskii V. I., Mekhanika kosmicheskogo poleta v elementarnom izlozhenii, Nauka, Gl. red. fiz.-matem. lit., M., 1970, 492 pp.