The method of gradient type for solving the problem of strict $h$-polyhedral separability
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2013), pp. 67-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of gradient type for solving the problem of strict separation of the convex hull of the finite set $A$ from finite set $B$ with $h$ hyperplanes is considered. Examples of the solution of the problem for parameter values $c=0$ and $c=\frac{1}{2}$ are given. Particular attention is paid to organization of calculations. Bibliogr. 7. Il. 6.
Keywords: $h$-polyhedral separability, gradient type method.
@article{VSPUI_2013_2_a7,
     author = {E. K. Cherneutsanu},
     title = {The method of gradient type for solving the problem of strict $h$-polyhedral separability},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {67--75},
     year = {2013},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a7/}
}
TY  - JOUR
AU  - E. K. Cherneutsanu
TI  - The method of gradient type for solving the problem of strict $h$-polyhedral separability
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 67
EP  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a7/
LA  - ru
ID  - VSPUI_2013_2_a7
ER  - 
%0 Journal Article
%A E. K. Cherneutsanu
%T The method of gradient type for solving the problem of strict $h$-polyhedral separability
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 67-75
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a7/
%G ru
%F VSPUI_2013_2_a7
E. K. Cherneutsanu. The method of gradient type for solving the problem of strict $h$-polyhedral separability. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2013), pp. 67-75. http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a7/

[1] Astorino A., Gaudioso M., “Polyhedral separability througt successive LP”, JOTA, 112:2 (2002), 265–293 | DOI | MR | Zbl

[2] Malozemov V. N., Cherneutsanu E. K., “Strogaya $h$-otdelimost dvukh mnozhestv”, Seminar po diskretnomu garmonicheskomu analizu i geometricheskomu modelirovaniyu, DHA CAGD, izbr. dokl. (18 dekabrya 2010 g.), 6 pp. http://dha.spb.ru/PDF/hSeparability.pdf

[3] Cherneutsanu E. K., “Strogaya $h$-otdelimost i lineinoe programmirovanie”, Seminar po diskretnomu garmonicheskomu analizu i geometricheskomu modelirovaniyu, DHA CAGD, izbr. dokl. (29 yanvarya 2011 g.), 7 pp. http://dha.spb.ru/PDF/hSeparabilityLP.pdf | Zbl

[4] Malozemov V. N., Cherneutsanu E. K., “Chislennyi metod strogogo $h$-otdeleniya”, Seminar po diskretnomu garmonicheskomu analizu i geometricheskomu modelirovaniyu, DHA CAGD, izbr. dokl. (15 oktyabrya 2011 g.), 12 pp. http://dha.spb.ru/PDF/hSepNumerical.pdf

[5] Cherneutsanu E. K., “Chislennye eksperimenty po strogoi $h$-otdelimosti”, Seminar po diskretnomu garmonicheskomu analizu i geometricheskomu modelirovaniyu, DHA CAGD, izbr. dokl. (17 dekabrya 2011 g.), 12 pp. http://dha.spb.ru/PDF/hSepEx.pdf | Zbl

[6] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972, 368 pp. | MR

[7] Sergeev A. N., Soloveva N. A., Cherneutsanu E. K., “Reshenie zadach lineinogo programmirovaniya v srede MATLAB”, Seminar po diskretnomu garmonicheskomu analizu i geometricheskomu modelirovaniyu, DHA CAGD, Programmnye realizatsii (12 fevralya 2011 g.), 9 pp. http://dha.spb.ru/programs.shtml