On H\"older condition numbers
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2013), pp. 46-54

Voir la notice de l'article provenant de la source Math-Net.Ru

A matrix with complex elements is considered. An algebraic method to find the maximum order of matrix Jordan block is suggested. The polynomial whose roots are the eigenvalues that correspond to the maximum Jordan block is constructed. The algorithm does not require the knowledge of the Jordan form of the matrix and its characteristic polynomial. It is based on finding Jordan blocks corresponding to the eigenvalue 0 of the other matrix, constructed with the help of Kronecker product. The results presented could be used for calculating the Hölder condition number which is the measure of the eigenvalue variation as small variations of matrix elements. Bibliogr. 7.
Keywords: Hölder condition number, matrix eigenvalues and eigenvectors, Kronecker product.
@article{VSPUI_2013_2_a4,
     author = {E. A. Kalinina},
     title = {On {H\"older} condition numbers},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {46--54},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a4/}
}
TY  - JOUR
AU  - E. A. Kalinina
TI  - On H\"older condition numbers
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 46
EP  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a4/
LA  - ru
ID  - VSPUI_2013_2_a4
ER  - 
%0 Journal Article
%A E. A. Kalinina
%T On H\"older condition numbers
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 46-54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a4/
%G ru
%F VSPUI_2013_2_a4
E. A. Kalinina. On H\"older condition numbers. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2013), pp. 46-54. http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a4/