@article{VSPUI_2013_2_a1,
author = {K. M. Bregman},
title = {Differentiation algorithm based on the additional variables method},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {14--26},
year = {2013},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a1/}
}
TY - JOUR AU - K. M. Bregman TI - Differentiation algorithm based on the additional variables method JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2013 SP - 14 EP - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a1/ LA - ru ID - VSPUI_2013_2_a1 ER -
%0 Journal Article %A K. M. Bregman %T Differentiation algorithm based on the additional variables method %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2013 %P 14-26 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a1/ %G ru %F VSPUI_2013_2_a1
K. M. Bregman. Differentiation algorithm based on the additional variables method. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2013), pp. 14-26. http://geodesic.mathdoc.fr/item/VSPUI_2013_2_a1/
[1] Rall L. B., Automatic differentiation: Techniques and applications, Springer, Berlin, 1981, 171 pp. | MR | Zbl
[2] Naumann U., “The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation”, SIAM, 2012, 340 | MR | Zbl
[3] Wolfram Mathematica Documentation Center http://reference.wolfram.com/mathematica/guide/Mathematica.html
[4] Babadzhanyants L. K., “Metod dopolnitelnykh peremennykh”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2010, no. 1, 3–11
[5] Babadzhanyants L. K., Bregman K. M., “Algoritm metoda dopolnitelnykh peremennykh”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2012, no. 2, 3–12
[6] Kholshevnikov K. V., Titov V. B., Zadacha dvukh tel, Izd-vo S.-Peterb. un-ta, SPb., 2007, 180 pp.
[7] Abramowitz M., Stegun I. A., Handbook of mathematical functions | MR
[8] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya bazovykh znanii, M., 2000, 624 pp.
[9] Berz M., Bischof C., Corliss G. F., “Computational differentiation: techniques, applications, and tools”, SIAM, 1996, 419 | MR
[10] Griewank A., “Evaluating derivatives”, SIAM, 2000, 369 | MR | Zbl
[11] Makino K., Berz M., “COSY INFINITY Version 9”, Nuclear Inst. and Methods in Physics Research A, 558:1 (2006), 346–350 | DOI
[12] Makino K., Berz M., “Taylor models and other validated functional inclusion methods”, Intern. J. of Pure and Applied Mathematics, 2003, 239–316 | MR | Zbl
[13] Abad A., Barrio R., Blesa F., Rodriguez M., “Breaking the limits: the Taylor series method”, Appl. Math. and Computation, 2011, 7940–7954 | MR | Zbl
[14] TIDES webpage URL http://gme.unizar.es/software/tides
[15] Babadzhanyants L. K., Bolshakov A. I., “Realizatsiya metoda ryadov Teilora dlya resheniya obyknovennykh differentsialnykh uravnenii”, Vychislitelnye metody i programmirovanie, 13 (2012), 497–510