Finding all maximal independent sets of an undirected graph
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2013), pp. 63-69

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm of search for all maximal independent sets in an undirected graph is presented. This problem is a so-called NP-complete problem which means the current lack of algorithms for solving it in polynomial time. The proposed algorithm, though also not being a polynomial one, in the worst cases finds a solution faster than the trivial exhaustive algorithm. Comparison of the suggested algorithm with the known Bron–Kerbosch algorithm over a certain set of random generated graphs with different density values is made. Special attention is paid to the comparison over sparse graphs. Bibliogr. 6.
Keywords: maximal independent set, sparse graph, branch and bound method.
@article{VSPUI_2013_1_a6,
     author = {O. S. Firyulina},
     title = {Finding all maximal independent sets of an undirected graph},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {63--69},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a6/}
}
TY  - JOUR
AU  - O. S. Firyulina
TI  - Finding all maximal independent sets of an undirected graph
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 63
EP  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a6/
LA  - ru
ID  - VSPUI_2013_1_a6
ER  - 
%0 Journal Article
%A O. S. Firyulina
%T Finding all maximal independent sets of an undirected graph
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 63-69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a6/
%G ru
%F VSPUI_2013_1_a6
O. S. Firyulina. Finding all maximal independent sets of an undirected graph. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2013), pp. 63-69. http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a6/