Generalization of Levin–Stechkin inequality
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2013), pp. 18-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical integral Levin-Stechkin inequality on a wider class of integrands is generalized. The integral of the two continuous functions product one of which being unimodal, but not symmetric as in Levin–Stechkin and the second one being convex, is bounded by a sum of products of linear combinations of the first two moments above functions mentioned. The proof uses the moment method and the process of orthogonalization for three functions. The result is illustrated with three examples. Bibliogr. 4.
Keywords: moment method, generalization of Levin–Stechkin inequality, unimodal function, convex function.
@article{VSPUI_2013_1_a2,
     author = {R. N. Miroshin},
     title = {Generalization of {Levin{\textendash}Stechkin} inequality},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {18--21},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a2/}
}
TY  - JOUR
AU  - R. N. Miroshin
TI  - Generalization of Levin–Stechkin inequality
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 18
EP  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a2/
LA  - ru
ID  - VSPUI_2013_1_a2
ER  - 
%0 Journal Article
%A R. N. Miroshin
%T Generalization of Levin–Stechkin inequality
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 18-21
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a2/
%G ru
%F VSPUI_2013_1_a2
R. N. Miroshin. Generalization of Levin–Stechkin inequality. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2013), pp. 18-21. http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a2/

[1] Hardy G. H., Littlewood J. E., Polya G., Inequalities

[2] Hardi G. G., Littl'vud Dzh. E., Polia G., Neravenstva (Inequalities), Per. s angl. V. I. Levina s dopolnenijami V. I. Levina i S. B. Stechkina, Gos. izd-vo inostr. lit., Moscow, 1948, 456 pp.

[3] Karlin S., Studden W. J., Tchebycheff systems: with applications in analysis and statistics | MR

[4] Karlin S., Stadden V., Chebyshjovskie sistemy i ih primenenie v analize i statistike (Tchebycheff systems: with applications in analysis and statistics), Per. s angl., ed. S. M. Ermakov, Nauka, Moscow, 1976, 568 pp. | MR

[5] Bateman H., Erdelyi A., Higher transcendental functions | MR

[6] Bejtmen G., Jerdeji A., Vysshie transcendentnye funkcii (Higher transcendental functions), v 2 t. Per. s angl. N. Ja. Vilenkina, v. 2, Nauka, Moscow, 1966, 205 pp. | MR

[7] Miroshin R. N., “Prostejshaja obratnaja zadacha nelinejnoj dinamiki (The symplest return problem of nonlinear dynamics)”, Vestn. S.-Peterb. un-ta. Ser. 1: Matematika, mehanika, astronomija, 1996, no. 2, 44–49 | MR | Zbl