@article{VSPUI_2013_1_a11,
author = {A. V. Egorov and S. Mondi\'e},
title = {A stability criterion for the single delay equation in terms of the {Lyapunov} matrix},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {106--115},
year = {2013},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a11/}
}
TY - JOUR AU - A. V. Egorov AU - S. Mondié TI - A stability criterion for the single delay equation in terms of the Lyapunov matrix JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2013 SP - 106 EP - 115 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a11/ LA - en ID - VSPUI_2013_1_a11 ER -
%0 Journal Article %A A. V. Egorov %A S. Mondié %T A stability criterion for the single delay equation in terms of the Lyapunov matrix %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2013 %P 106-115 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a11/ %G en %F VSPUI_2013_1_a11
A. V. Egorov; S. Mondié. A stability criterion for the single delay equation in terms of the Lyapunov matrix. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2013), pp. 106-115. http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a11/
[1] Krasovskii N. N., “On the application of the second method of Lyapunov for equations with time delays”, Prikl. Mat. Meh., 20 (1956), 315–327 | MR
[2] Repin M. Yu., “Quadratic Lyapunov functionals for systems with delay”, Prikl. Mat. Meh., 29 (1965), 564–566 | MR | Zbl
[3] Infante E. F., Castelan W. B., “A Liapunov functional for a matrix difference-differential equation”, J. of Differential Eq., 29 (1978), 439–451 | MR | Zbl
[4] Datko R., “An algorithm for computing Liapunov functionals for some differential-difference equations”, Ordinary Differential Equations, ed. L. Weiss, Academic Press, New York, 1972, 387–398 | MR
[5] Huang W., “Generalization of Liapunov's theorem in a linear delay system”, J. of Mathematical Analysis and Applications, 142 (1989), 83–94 | MR | Zbl
[6] Kharitonov V. L., Zhabko A. P., “Lyapunov–Krasovskii approach for robust stability of time delay systems”, Automatica, 39 (2003), 15–20 | MR | Zbl
[7] Kharitonov V. L., Plischke E., “Lyapunov matrices for time-delay systems”, Syst. Contr. Lett., 55 (2006), 697–706 | MR | Zbl
[8] Jarlebring E., Vanbiervliet J., Michiels W., “Characterizing and computing the $\mathcal{H}_2$ norm of time-delay systems by solving the delay Lyapunov equation”, IEEE Trans. on Autom.Contr., 56:4 (2011), 814–825 | MR
[9] Mondié S., Egorov A., “Some necessary conditions for the exponential stability of one delay systems”, 8th Intern. Conference on Electrical Engineering, Computing Science and Automatic Control (Merida, Mexico, 2011), 103–108
[10] Mondié S., “Assessing the exact stability region of the single-delay scalar equation via its Lyapunov function”, IMA J. of Math. Contr. and Inf., 2012 http://imamci.oxfordjournals.org | MR | Zbl
[11] Bellman R., Cooke K., Differential difference equations, Academic Press, New York, 1963, 465 pp. | MR
[12] Hayes N. D., “Roots of the transcendental equation associated with a certain difference-differential equation”, J. London Mathem. Society, 1950, 226–232 | MR | Zbl