A stability criterion for the single delay equation in terms of the Lyapunov matrix
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2013), pp. 106-115
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In case of delay systems the Lyapunov–Krasovskii functional approach plays the role of the second Lyapunov method for the case of ordinary differential equations. To investigate stability of linear systems the so-called complete type functionals are often applied. These functionals depend on special matrix valued functions, named the Lyapunov matrices. It is of interest to find conditions on the Lyapunov matrix guarantees the stability of the system. In the work of A. V. Egorov and S. Mondié (2011) some necessary stability conditions have been obtained for a wide class of delay linear systems. In that contribution it is proved that these necessary conditions become sufficient for the case of a scalar single delay equation. The proof of the result is based on the explicit expression for Lyapunov matrix obtained as the solution of a special difference-differential equation with boundary conditions. Bibliogr. 12. Il. 1.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
delay systems, linear systems, Lyapunov–Krasovskii functionals, necessary stability conditions.
                    
                    
                    
                  
                
                
                @article{VSPUI_2013_1_a11,
     author = {A. V. Egorov and S. Mondi\'e},
     title = {A stability criterion for the single delay equation in terms of the {Lyapunov} matrix},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {106--115},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a11/}
}
                      
                      
                    TY - JOUR AU - A. V. Egorov AU - S. Mondié TI - A stability criterion for the single delay equation in terms of the Lyapunov matrix JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2013 SP - 106 EP - 115 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a11/ LA - en ID - VSPUI_2013_1_a11 ER -
%0 Journal Article %A A. V. Egorov %A S. Mondié %T A stability criterion for the single delay equation in terms of the Lyapunov matrix %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2013 %P 106-115 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a11/ %G en %F VSPUI_2013_1_a11
A. V. Egorov; S. Mondié. A stability criterion for the single delay equation in terms of the Lyapunov matrix. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2013), pp. 106-115. http://geodesic.mathdoc.fr/item/VSPUI_2013_1_a11/
