Gradient methods in the variational problem with free ends
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 77-84
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The efficiency of techniques of nonsmooth analysis and the theory of exact penalty functions for solving various problems of the calculus of variations was demonstrated in [1]. In this paper, some results of application of the approach described in [1] to the problem with free ends are presented. A “new” form of necessary conditions is obtained, and, based on them, new numerical algorithms (direct methods) of steepest descent and conjugate directions are constructed. The “natural boundary conditions” are derived in an elementary way from them.
Keywords: exact penalty functions, nonsmooth analysis, natural boundary conditions.
Mots-clés : calculus of variations
@article{VSPUI_2012_4_a7,
     author = {G. Sh. Tamasyan},
     title = {Gradient methods in the variational problem with free ends},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {77--84},
     year = {2012},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a7/}
}
TY  - JOUR
AU  - G. Sh. Tamasyan
TI  - Gradient methods in the variational problem with free ends
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2012
SP  - 77
EP  - 84
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a7/
LA  - ru
ID  - VSPUI_2012_4_a7
ER  - 
%0 Journal Article
%A G. Sh. Tamasyan
%T Gradient methods in the variational problem with free ends
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2012
%P 77-84
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a7/
%G ru
%F VSPUI_2012_4_a7
G. Sh. Tamasyan. Gradient methods in the variational problem with free ends. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 77-84. http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a7/

[1] Demyanov V. F., Usloviya ekstremuma i variatsionnye zadachi, Vysshaya shkola, M., 2005, 335 pp.

[2] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp. | MR

[3] Eremin I. I., “Metod «shtrafov» v vypuklom programmirovanii”, Dokl. AN SSSR, 143:4 (1967), 748–751 | MR

[4] Demyanov V. F., Tamasyan G. Sh., “Exact penalty functions in isoperimetric problems”, Optimization, 60:1 (2011), 153–177 | DOI | MR | Zbl

[5] Demyanov V. F., Tamasyan G. Sh., “O pryamykh metodakh resheniya variatsionnykh zadach”, Trudy In-ta matematiki i mekhaniki Uralsk. otd. RAN, 16, no. 5, 2010, 36–47

[6] Gyunter N. M., Kurs variatsionnogo ischisleniya, Gostekhizdat, M., 1941, 308 pp.

[7] Smirnov V. I., Krylov V. I., Kantorovich L. V., Variatsionnoe ischislenie, Izd-vo Leningr. un-ta, L., 1933, 204 pp.

[8] Vanko V. I., Ermoshina O. V., Kuvyrkin G. N., Variatsionnoe ischislenie i optimalnoe upravlenie, uchebnik dlya vuzov, 2-e izd., eds. V. S. Zarubin, A. P. Krischenko, Izd-vo Mosk. gos. tekhn. un-ta im. N. E. Baumana, M., 2001, 488 pp.