Gradient methods in the variational problem with free ends
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 77-84
Voir la notice de l'article provenant de la source Math-Net.Ru
The efficiency of techniques of nonsmooth analysis and the theory of exact penalty functions for solving various problems of the calculus of variations was demonstrated in [1]. In this paper, some results of application of the approach described in [1] to the problem with free ends are presented. A “new” form of necessary conditions is obtained, and, based on them, new numerical algorithms (direct methods) of steepest descent and conjugate directions are constructed. The “natural boundary conditions” are derived in an elementary way from them.
Keywords:
exact penalty functions, nonsmooth analysis, natural boundary conditions.
Mots-clés : calculus of variations
Mots-clés : calculus of variations
@article{VSPUI_2012_4_a7,
author = {G. Sh. Tamasyan},
title = {Gradient methods in the variational problem with free ends},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {77--84},
publisher = {mathdoc},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a7/}
}
TY - JOUR AU - G. Sh. Tamasyan TI - Gradient methods in the variational problem with free ends JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2012 SP - 77 EP - 84 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a7/ LA - ru ID - VSPUI_2012_4_a7 ER -
%0 Journal Article %A G. Sh. Tamasyan %T Gradient methods in the variational problem with free ends %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2012 %P 77-84 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a7/ %G ru %F VSPUI_2012_4_a7
G. Sh. Tamasyan. Gradient methods in the variational problem with free ends. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 77-84. http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a7/