On the mathematical model of a pacemaker
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 58-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The elektrical potential of the Heart is generated in the $P$-cells (pacemakers synchrony) by the sinoatrial node (SA), too by the atrioventricular node (AV), even be able by the Purkinje fibers. The action potential usually is generated by the SA node. The sinoatrial node is a elump of self-osciallatory gells. There cells fire regulary the cardiac conduction system. In this article we show that when an ionic exictable membrane is incorporated into a nonlinear diffusion process and the self-oscillatory mathematical model of the pacemaker on the basis of the nonlinear conductance is constructed.
Keywords: pacemaker, action potential, travelling nerve pulse.
@article{VSPUI_2012_4_a5,
     author = {V. S. Novoselov},
     title = {On the mathematical model of a pacemaker},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {58--64},
     year = {2012},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a5/}
}
TY  - JOUR
AU  - V. S. Novoselov
TI  - On the mathematical model of a pacemaker
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2012
SP  - 58
EP  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a5/
LA  - ru
ID  - VSPUI_2012_4_a5
ER  - 
%0 Journal Article
%A V. S. Novoselov
%T On the mathematical model of a pacemaker
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2012
%P 58-64
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a5/
%G ru
%F VSPUI_2012_4_a5
V. S. Novoselov. On the mathematical model of a pacemaker. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 58-64. http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a5/

[1] O. G. Gazenko (otv. red.), Slovar fiziologicheskikh terminov, redkol.: I. A. Agadzhanyants, O. S. Andrianov, A. A. Bashkirov i dr., Nauka, M., 1987, 448 pp.

[2] M. S. Gilyarov (gl. red.), Biologicheskii entsiklopedicheskii slovar, redkol.: A. A. Baev, G. G. Vinberg, G. A. Zavarzin i dr., Sov. entsiklopediya, M., 1989, 864 pp.

[3] E. I. Borzyak, V. Ya. Bocharov, L. I. Volkova i dr., Anatomiya cheloveka, v 2 t., v. 2, ed. M. R. Sapin, Meditsina, M., 1986, 480 pp.

[4] Keener J., Sneyd J., Mathematical physiology, Interdisciplinary Applied Mathematic, 8, 1998, 727 pp. | MR

[5] Novoselov V. S., Statisticheskie modeli neirodinamiki, preprint fakulteta prikladnoi matematiki–protsessov upravleniya SPbGU, Nauch.-issled. in-t khimii S.-Peterb. un-ta, SPb., 2004, 64 pp.

[6] Novoselov V. S., Statisticheskaya dinamika, ucheb. posobie, Izd-vo S.-Peterb. un-ta, SPb., 2009, 393 pp.

[7] Novoselov V. S., “K imitatsionnomu modelirovaniyu nervnogo impulsa”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2011, no. 4, 73–83

[8] A. M. Prokhorov (gl. red.), Fiziologicheskii entsiklopedicheskii slovar, redkol.: D. M. Alekseev, A. M. Bonch-Bruevich, A. S. Borovik-Romanov i dr., Sov. entsiklopediya, M., 1983, 928 pp. | MR | Zbl

[9] Berkinblit M. B., Zherdyaev A. V., Tarasova O. G., Zadachi po biologii cheloveka i zhivotnykh, eksper. ucheb. posobie, MIROS, M., 1995, 176 pp.

[10] Tamm I. E., Osnovy teorii elektrichestva, ucheb. posobie dlya vuzov, Nauka, M., 1989, 504 pp.

[11] Novoselov V. S., Korolev V. S., Analiticheskaya mekhanika upravlyaemoi sistemy, ucheb. posobie, Izd-vo S.-Peterb. un-ta, SPb., 2005, 298 pp.

[12] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1964, 272 pp. | MR

[13] Zhabotinskii A. M., Kontsentratsionnye avtokolebaniya, Nauka, M., 1974, 179 pp.

[14] Krinskii V. I., Medvinskii A. B., Panfilov A. V., Evolyutsiya avtovolnovykh vikhrei, Ser. Matematika, kibernetika, 8, Znanie, M., 1986, 48 pp.