One approach to the problem of estimating parameters of a dynamical system under uncertainty
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 31-36
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, we consider problem of finding parameters of a dynamical system when the input of the measuring device is a affected by a limited disturbance. To describe such a system, differential inclusions are used. To solve the problem stated, the Pontryagin maximum principle was employed, and, a result, the linear system was reduced to an unconstrained optimization problem, for which necessary optimality conditions were obtained and an algorithm for its solution was derived.
Keywords:
differential inclusions, support functions, support vector.
Mots-clés : identification
Mots-clés : identification
@article{VSPUI_2012_4_a2,
author = {V. V. Karelin},
title = {One approach to the problem of estimating parameters of a dynamical system under uncertainty},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {31--36},
publisher = {mathdoc},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a2/}
}
TY - JOUR AU - V. V. Karelin TI - One approach to the problem of estimating parameters of a dynamical system under uncertainty JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2012 SP - 31 EP - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a2/ LA - ru ID - VSPUI_2012_4_a2 ER -
%0 Journal Article %A V. V. Karelin %T One approach to the problem of estimating parameters of a dynamical system under uncertainty %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2012 %P 31-36 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a2/ %G ru %F VSPUI_2012_4_a2
V. V. Karelin. One approach to the problem of estimating parameters of a dynamical system under uncertainty. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 31-36. http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a2/