The $\mathcal H_2$ norm of a transfer function of a neutral type equation
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 117-123
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper it is considered the problem of computing of a norm of a transfer function of a neutral type time-delay equation. It is known, that the Lyapunov function can be used to compute the $\mathcal H_2$ norm of linear time-invariant systems. This result is exactly the same: the $\mathcal H_2$ norm can be find with use of coefficients of the equation and the Lyapunov function for time-delay systems. In this work it is received the explicit expression for the $\mathcal H_2$ norm and the way to compute the Lyapunov function.
Keywords:
transfer function, delays, $\mathcal H_2$ norm.
@article{VSPUI_2012_4_a11,
author = {V. A. Sumacheva},
title = {The $\mathcal H_2$ norm of a transfer function of a neutral type equation},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {117--123},
year = {2012},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a11/}
}
TY - JOUR AU - V. A. Sumacheva TI - The $\mathcal H_2$ norm of a transfer function of a neutral type equation JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2012 SP - 117 EP - 123 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a11/ LA - ru ID - VSPUI_2012_4_a11 ER -
%0 Journal Article %A V. A. Sumacheva %T The $\mathcal H_2$ norm of a transfer function of a neutral type equation %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2012 %P 117-123 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a11/ %G ru %F VSPUI_2012_4_a11
V. A. Sumacheva. The $\mathcal H_2$ norm of a transfer function of a neutral type equation. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 117-123. http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a11/
[1] Jarlebring E., Vanbierviet J., Michiels W., “Explicit expression for the $\mathcal H_2$ norm of time-delay system based on the delay Lyapunov equation”, Proc. of the 49th IEEE Conference on Decision and Control (Atlanta, USA, 2010), 164–169
[2] Bellman Richard, Cooke Kenneth, Differential-differebce equation | MR | Zbl
[3] Zhou K., Doyle J. C., Glover K., Robust and Optimal Control, Engelwood Cliffs, New York, Prentice Hall, 1996, 586 pp.
[4] Velazquez-Velazquez J. E., Kharitonov V. L., “Lyapunov–Krasovskii functionals for scalar neutral type time delay equations”, System Control Letters, 58 (2009), 17–25 | DOI | MR | Zbl