Mathematical models of single population
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 18-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathematical models of single populations on an unlimited trophic resource, located on the line, or occupying the interconnected habitats are considered in this article. To describe the population in the first case the evolution equation is used, the system of ordinary differential equations is used in the second case. Problems for the generalized logistic population and population Ollie are solved. The solution of the static equation on a bounded interval is represented in quadratures for different boundary conditions. Conditions of possible existence of periodic solutions on the infinite line for population Ollie are found. The stability of homogeneous states is investigated. Conditions under which the trivial solution can be stable are obtained. Possibility of the existence several stable stationary points for the two-chamber model for the population Ollie is demonstrated.
Mots-clés : population
Keywords: mathematical modeling, differential equations.
@article{VSPUI_2012_4_a1,
     author = {E. A. Gorbunova and E. P. Kolpak},
     title = {Mathematical models of single population},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {18--30},
     year = {2012},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a1/}
}
TY  - JOUR
AU  - E. A. Gorbunova
AU  - E. P. Kolpak
TI  - Mathematical models of single population
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2012
SP  - 18
EP  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a1/
LA  - ru
ID  - VSPUI_2012_4_a1
ER  - 
%0 Journal Article
%A E. A. Gorbunova
%A E. P. Kolpak
%T Mathematical models of single population
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2012
%P 18-30
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a1/
%G ru
%F VSPUI_2012_4_a1
E. A. Gorbunova; E. P. Kolpak. Mathematical models of single population. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 18-30. http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a1/

[1] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, per. s fr. O. N. Bondarenko, In-t kompyut. tekhnologii, Moskva–Izhevsk, 2004, 288 pp.

[2] Aleksandrov A. Yu., Platonov A. V., Starkov V. N., Stepenko N. A., Matematicheskoe modelirovanie i issledovanie ustoichivosti biologicheskikh soobschestv, Solo, SPb., 2006, 186 pp.

[3] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, In-t kompyut. tekhnologii, Moskva–Izhevsk, 2003, 368 pp.

[4] Romanov M. F., Fedorov M. P., Matematicheskie modeli v ekologii, Ivan Fedorov, SPb., 2003, 240 pp.

[5] Svirezhev Yu. M., Nelineinye volny, dissipativnye struktury i katastrofy v ekologii, Nauka, M., 1987, 368 pp. | MR | Zbl

[6] Myatlev V. D., Panchenko L. A., Riznichenko G. Yu., Terekhin A. T., Teoriya veroyatnostei i matematicheskaya statistika. Matematicheskie modeli, Izdat. tsentr «Akademiya», M., 2009, 320 pp.

[7] Riznichenko G. Yu., Rubin A. B., Biofizicheskaya dinamika produktsionnykh protsessov, In-t kompyut. tekhnologii, Moskva–Izhevsk, 2004, 464 pp.

[8] Murray J. D., Mathematical biology, Springer, New York, 2002, 551 pp. | MR

[9] Schofield P., “Spatial explicit models of Turelli–Hoffmann Wolbachia invasive wave fronts”, J. Theor. Biol., 212:1 (2001), 121–131 ; 477 с. | MR

[10] Begon M., Harper J. L., Townsend C. R., Ecology

[11] Emelchenko N. N., “Obzor migratsii belolobogo gusya (Anser albifrons) v Zapadnoi Palearktike”, Zool. zhurn., 88:9 (2009), 1090–1108

[12] Zagrebalnyi S. V., Fomin V. V., Burdin A. M., “Dinamika chislennosti, struktury populyatsii kalanov Enhydra lutris na Komandorskikh ostrovakh i otsenka ikh migratsionnoi aktivnosti mezhdu ostrovami arkhipelaga”, Ekologiya, 2008, no. 1, 43–49

[13] Mamontov S. N., “Raspredelenie po stvolu dereva koroeda-tipografa (Ips typographus, Coleoptera, Scolyniddae) i ego entomogafov”, Zool. zhurn., 88:9 (2009), 1139–1145

[14] Zelenskaya L. A., “Chislennost i raspredelenie ptits na ostrove Matykil (Yamskie ostrova, Okhotskoe more)”, Zool. zhurn., 88:5 (2009), 546–555

[15] Shiyatov S. G., Terentev M. M., Fomin V. V., Tsimmerman N. E., “Vertikalnyi i gorizontalnyi sdvigi verkhnei granitsy redkolesii i somknutykh lesov v XX stoletii na polyarnom Urale”, Ekologiya, 2007, no. 4, 243–248

[16] Liderman G. V., Abaturov B. D., Bykov A. V., Lopushkov V. A., Dinamika naseleniya pozvonochnykh zhivotnykh Zavolzhskoi polupustyni, Nauka, M., 2005, 252 pp.

[17] Seifulina R. R., “Araneokompleks (Arachnida, Aranei) v agrosistemakh kubanskoi ravniny (vidovoi sostav, prostranstvennoe razmeschenie i sezonnaya dinamika)”, Zool. zhurn., 89:2 (2010), 151–166

[18] Feneva I. Yu., Palpsh A. L., Budaev S. V., “Vliyanie obiliya pischi i bioticheskikh otnoshenii na uspekh vseleniya krupnykh i melkikh vidov vetvistousykh rakoobraznykh v eksperimentalnykh usloviyakh”, Zool. zhurn., 89:4 (2010), 416–423

[19] Khokhlova T. Yu., “Chernyi drozd (Turdus merula) u severo-vostochnoi granitsy areala: osobennosti territorialnykh svyazei i migratsii v period formirovaniya periferiinoi populyatsii v Yuzhnoi Karelii”, obzor, Zool. zhurn., 89:2 (2010), 212–221

[20] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972, 735 pp. | MR

[21] Chernykh K. F., Nelineinaya teoriya uprugosti v mashinostroitelnykh raschetakh, Mashinostroenie, L., 1986, 336 pp.

[22] McLeod P., Martin A. P., Richards K. J., “Minimum length scale for growth-limited oceanic plankton distributions”, Ecological Modeling, 158:1–2 (2002), 111–120 | DOI