Pade approximant as a solution of Cauchy problem
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 3-17
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Analytical algorithms of Pade approximants which is used to solve Cauchy problem known to be holomorphic in a certain given set $\mathcal{D}_t(x^0,t_0)$, where the set is not conform equivalent to circle are described.
Keywords: differential equalization, Pade approximation, many special.
Mots-clés : the conformal transformations
@article{VSPUI_2012_4_a0,
     author = {V. E. Vishnevskii and A. V. Zubov and O. A. Ivanova},
     title = {Pade approximant as a solution of {Cauchy} problem},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {3--17},
     year = {2012},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a0/}
}
TY  - JOUR
AU  - V. E. Vishnevskii
AU  - A. V. Zubov
AU  - O. A. Ivanova
TI  - Pade approximant as a solution of Cauchy problem
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2012
SP  - 3
EP  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a0/
LA  - ru
ID  - VSPUI_2012_4_a0
ER  - 
%0 Journal Article
%A V. E. Vishnevskii
%A A. V. Zubov
%A O. A. Ivanova
%T Pade approximant as a solution of Cauchy problem
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2012
%P 3-17
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a0/
%G ru
%F VSPUI_2012_4_a0
V. E. Vishnevskii; A. V. Zubov; O. A. Ivanova. Pade approximant as a solution of Cauchy problem. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2012), pp. 3-17. http://geodesic.mathdoc.fr/item/VSPUI_2012_4_a0/

[1] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, per. s fr. E. Leontovich, A. Maier, Gostekhizdat, M.–L., 1947, 392 pp.

[2] Zubov V. I., Ustoichivost dvizheniya: metody Lyapunova i ikh primenenie, Vysshaya shkola, M., 1984, 271 pp. | MR | Zbl

[3] Zubov V. I., Analiticheskaya dinamika giroskopicheskikh sistem, Sudostroenie, L., 1970, 320 pp. | Zbl

[4] Vishnevskii V. E., Luchevaya approksimatsiya Pade–Shenksa preobrazovanii Li–Depri polinomialnykh sistem differentsialnykh uravnenii, Dep. v VINITI ot 13 maya 1985 g., No 3870–85, 32 pp.

[5] Filatov A. N., Obobschennye ryady Li i ikh prilozheniya, Izd-vo AN UzSSR, Tashkent, 1963, 112 pp. | MR

[6] Beiker Dzh. (ml.), Greivs-Morris P., Approksimatsii Pade, per. s angl. E. A. Rakhmanova, S. P. Suetina, Mir, M., 1986, 502 pp. | MR

[7] Gonchar A. A., “O skhodimosti approksimatsii Pade”, Matem. sb., 92:1 (1973), 152–164 | Zbl

[8] Lebedev N. A., Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975, 336 pp. | MR | Zbl

[9] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR