Method of backward induction for using optimal stopping rules
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2012), pp. 88-97
Method of backward induction for using optimal stopping rules. It is shown how a backward induction method allows to use optimal stopping rules to maximize gains (loss mitigation) in the systems of detecting spontaneous phenomena.
Keywords:
method of inverse induction, optimal stopping rules.
@article{VSPUI_2012_3_a8,
author = {A. K. Rozov and A. N. Tsarapkin},
title = {Method of backward induction for using optimal stopping rules},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {88--97},
year = {2012},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a8/}
}
TY - JOUR AU - A. K. Rozov AU - A. N. Tsarapkin TI - Method of backward induction for using optimal stopping rules JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2012 SP - 88 EP - 97 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a8/ LA - ru ID - VSPUI_2012_3_a8 ER -
%0 Journal Article %A A. K. Rozov %A A. N. Tsarapkin %T Method of backward induction for using optimal stopping rules %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2012 %P 88-97 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a8/ %G ru %F VSPUI_2012_3_a8
A. K. Rozov; A. N. Tsarapkin. Method of backward induction for using optimal stopping rules. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2012), pp. 88-97. http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a8/
[1] Snell I. L., “Applications of martingal system theorems”, Trans. Amer. Math. Soc., 1953, 293–312 | MR
[2] Kallianpur G., Stochastic filtering theory
[3] Robbins H., Siegmund D., Chow G. S., Creat expectations: the theory of optimal stopping
[4] Elliott R. J., Stochastic calculus and applications
[5] Shiryaev A. N., Statisticheskii posledovatelnyi analiz, Nauka, M., 1976, 271 pp.
[6] Urusov M. A., “Ob odnom svoistve momenta dostizheniya maksimuma brounovskim dvizheniem v nekotorykh zadachakh optimalnoi ostanovki”, Teoriya veroyatnostei i ee primeneniya, 49:1 (2004), 184–196
[7] Peskir G., Shiryaev A., Optimal stopping and free-boundary problems, Birkhauser, Basel, 2006, 500 pp. | MR | Zbl