Some properties of the support function of a convex set on a convex cone
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2012), pp. 70-78
Cet article a éte moissonné depuis la source Math-Net.Ru
The concept of the support function of a convex set is one of the key ones in convex analysis. It was introduced by German mathematician H. Minkowski at the end of the 19th century. In this paper the properties of support functions on a closed convex cone are considered. For a convex compact set the concept of forming a set with respect to this cone is introduced. The properties of this set are studied. Conditions under which support functions of the two sets on the cone are equal are derived. Some drawings illustrate these properties.
Keywords:
positively homogeneous convex function, support function, subdifferential of a convex function, conjugate cone.
@article{VSPUI_2012_3_a6,
author = {L. N. Polyakova},
title = {Some properties of the support function of a convex set on a~convex cone},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {70--78},
year = {2012},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a6/}
}
TY - JOUR AU - L. N. Polyakova TI - Some properties of the support function of a convex set on a convex cone JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2012 SP - 70 EP - 78 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a6/ LA - ru ID - VSPUI_2012_3_a6 ER -
%0 Journal Article %A L. N. Polyakova %T Some properties of the support function of a convex set on a convex cone %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2012 %P 70-78 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a6/ %G ru %F VSPUI_2012_3_a6
L. N. Polyakova. Some properties of the support function of a convex set on a convex cone. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2012), pp. 70-78. http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a6/
[1] Leichtweiss K. Yonk, Konvexe Mengen
[2] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp.
[3] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, Gl. red. fiz.-mat. lit., M., 1980, 317 pp.
[4] Rockafeliar R., Convex analysis
[5] Caprari E., Demyanov V. F., “Conically equivalent sets and their minimality”, Generalized convexity and optimization for economic and financial decisions, eds. G. Giorgi, F. Rossi, Pitagora Editrice Bologna, Verona, 1998, 81–95 | MR