@article{VSPUI_2012_3_a5,
author = {A. Yu. Perevarukha},
title = {Creation of locally disconnected basin boundary of attractors in population dynamics model},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {59--69},
year = {2012},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a5/}
}
TY - JOUR AU - A. Yu. Perevarukha TI - Creation of locally disconnected basin boundary of attractors in population dynamics model JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2012 SP - 59 EP - 69 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a5/ LA - ru ID - VSPUI_2012_3_a5 ER -
%0 Journal Article %A A. Yu. Perevarukha %T Creation of locally disconnected basin boundary of attractors in population dynamics model %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2012 %P 59-69 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a5/ %G ru %F VSPUI_2012_3_a5
A. Yu. Perevarukha. Creation of locally disconnected basin boundary of attractors in population dynamics model. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2012), pp. 59-69. http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a5/
[1] Li T., Yorke J., “Period three implies chaos”, Amer. Math. Monthly, 82:10 (1975), 985–990 | DOI | MR
[2] Henon M., “2-Dimensional mapping with a strange attractor”, Comm. Math. Phys., 50 (1976), 69–77 | DOI | MR
[3] Magnitskii N. A., Oginova Yu. V., “Issledovanie stsenariya perekhoda k khaosu v modeli ekologicheskoi sistemy”, Trudy In-ta sistemnogo analiza RAN, 14 (2005), 190–197
[4] Frisman E. Ya., Skaletskaya E. I., “Strannye attraktory v prosteishikh modelyakh dinamiki chislennosti biologicheskikh populyatsii”, Obozrenie prikladnoi i promyshlennoi matematiki, 1:6 (1994), 988–1004
[5] Ott E., Chaos in dynamical systems, Cambridge University Press, Cambridge, 1993, 386 pp. | MR
[6] Ricker W., “Stock and recruitment”, J. of the Fisheries research board of Canada, 11:5 (1954), 559–623 | DOI
[7] Milnor J, “On the concept of attractor”, Commun. Math. Phys., 99 (1985), 177–195 | DOI | MR | Zbl
[8] Malinetskii G. G., Potapov A. B., Nelineinaya dinamika i khaos, KomKniga, M., 2006, 240 pp.
[9] Alligood K., Yorke E., Yorke J., “Why period-doubling cascades occur: periodic orbit creation followed by stability shedding”, Physica D, 28 (1987), 181–200 | DOI | MR
[10] Feigenbaum M. J., “Universal behavior in nonlinear systems”, Physica D, 7:1–3 (1983), 16–39 | DOI | MR
[11] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, 1985, 5–220
[12] Witt A., Feudel U., Pikovsky A., “Birth of strange nonchaotic attractors due to interior crisis”, Physica D, 109 (1997), 180–190 | DOI | MR | Zbl
[13] Zhivotovskii L. A., Khramtsov V. V., “Model dinamiki chislennosti gorbushi Oncorhynchus gorbusha”, Voprosy ikhtiologii, 36:3 (1996), 369–385
[14] Farmer J., Ott E., Yorke J., “The dimension of chaotic attractors”, Physica D, 7 (1983), 153–170 | DOI | MR
[15] Grebogi C., Ott E., Yorke J. A., “Crises, sudden changes in chaotic attractors and transient chaos”, Physica D, 7 (1983), 181–200 | DOI | MR
[16] Grebogi C., Ott E., Yorke J. A., “Fractal basin boundaries, long-lived chaotic transients and unstable-unstable pair bifurcation”, Phys. Rev. Letters, 50:13 (1983), 935–938 | DOI | MR
[17] Jeffries C., Perez J., “Direct observation of crises of the chaotic attractor in a nonlinear oscillator”, Phys. Rev. A, 27:1 (1983), 601–603 | DOI | MR
[18] Perevaryukha A. Yu., “Gibridnye modeli dinamiki bioresursov: ravnovesie, tsikl i perekhodnyi khaos”, Avtomatika i vychislitelnaya tekhnika, 2011, no. 4, 55–68
[19] Sharkovskii A. N., Kolyada S. F., Sivek A. G., Fedorenko V. V., Dinamika odnomernykh otobrazhenii, Naukova dumka, Kiev, 1989, 216 pp.
[20] Magnitskii N. A., Sidorov S. V., Novye metody khaoticheskoi dinamiki, Editorial URSS, M., 2004, 320 pp.
[21] Peterman R. M., “A simple mechanism that causes collapsing stability regions in exploited salmonid population”, J. of the Fisheries research board of Canada, 34 (1977), 1130–1142 | DOI
[22] Vasnetsov V. V., “Etapy razvitiya kostistykh ryb”, Ocherki po obschim voprosam ikhtiologii, ed. E. N. Pavlovskii, Izd-vo AN SSSR, M., 1953, 207–217
[23] Kolesov Yu. B., Senichenkov Yu.B., Modelirovanie sistem. Dinamicheskie i gibridnye sistemy, BKhV, SPb., 2006, 224 pp.
[24] Teoriya sistem s peremennoi strukturoi, ed. E. S. Emelyanov, Nauka, M., 1970, 590 pp.
[25] Perevaryukha A. Yu., “Nelineinye effekty i perekhodnye rezhimy v dinamike novykh modelei upravleniya bioresursami”, Trudy SPIIRAN, 16, 2011, 243–255 | Zbl
[26] Senichenkov Yu. B., Chislennoe modelirovanie gibridnykh sistem, Izd-vo Politekhn. un-ta, SPb., 2004, 206 pp.
[27] MacDonald S., Grebogi C., Ott E., Yorke J., “Fractal basin boundaries”, Physica D, 17:2 (1985), 125–153 | DOI | MR
[28] Grebogi C., Ott E., Yorke J, “Metamorphoses of basin boundaries in nonlinear dynamical system”, Phys. Rev. Letters, 56:10 (1986), 1011–1016 | DOI | MR
[29] Hirsch E., Huberman B., Scalapino J., “Theory of intermittency”, Phys. Rev. A, 25:1 (1982), 519–532 | DOI
[30] Silchenko A., Beri S., Luchinsky D., “Fluctuation transition across different kinds of fractal basin boundaries”, Phys. Rev. E, 71 (2005), 203–211 | DOI | MR
[31] Nusse H. E., Yorke J. A., “Basins of attraction, Wada basin boundaries and basin cells”, Science, 271 (1996), 1376–1380 | DOI | MR | Zbl
[32] Perevaryukha Yu. N., Geraskin P. P., Perevaryukha T. Yu., “Sravnitelnyi immunokhimicheskii analiz vnutrividovykh osobennostei syvorotochnykh belkov sevryugi Acipenser stellatus Kaspiiskogo basseina”, Voprosy ikhtiologii, 51:3 (2011), 405–410
[33] Geraskin P. P., Metallov G. F., Perevaryukha Yu. N., “Fiziologicheskie i populyatsionno-geneticheskie issledovaniya kaspiiskikh ryb”, Rybnoe khozyaistvo, 2007, no. 3, 66–68 | MR