Extremal controls in the optimization problem for therapy process
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2012), pp. 113-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problems of optimal control for a chemotherapy process based on a well-known dynamic model are considered. The solution method is related to combining the control modes that appear according to the Pontryagin maximum principle. Extreme procedures of control with special sections that amplify the known strategies of therapy within the given model are constructed.
Keywords: optimal control problem, maximum principle, extremal processes.
@article{VSPUI_2012_3_a11,
     author = {V. A. Srochko},
     title = {Extremal controls in the optimization problem for therapy process},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {113--119},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a11/}
}
TY  - JOUR
AU  - V. A. Srochko
TI  - Extremal controls in the optimization problem for therapy process
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2012
SP  - 113
EP  - 119
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a11/
LA  - ru
ID  - VSPUI_2012_3_a11
ER  - 
%0 Journal Article
%A V. A. Srochko
%T Extremal controls in the optimization problem for therapy process
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2012
%P 113-119
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a11/
%G ru
%F VSPUI_2012_3_a11
V. A. Srochko. Extremal controls in the optimization problem for therapy process. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2012), pp. 113-119. http://geodesic.mathdoc.fr/item/VSPUI_2012_3_a11/

[1] Antipov A. V., Bratus A. S., “Matematicheskaya model optimalnoi strategii khimioterapii s uchetom dinamiki chisla kletok neodnorodnoi opukholi”, Zhurn. vychislit. matematiki i mat. fiziki, 49:11 (2009), 1907–1919 | MR | Zbl

[2] Aranjo R. P., Mcelwain D. L., “A history of the study of solid tumour growth: the contribution of mathematical modeling”, Bull. Math. Biol., 66 (2004), 1039–1091 | DOI | MR

[3] Costa M. S., Boldrini J. L., Bassanezi R. C., “Drug kinetics and drug resistance in optimal chemotherapy”, Math. Biosciences, 125 (1995), 191–209 | DOI | Zbl

[4] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Matematika, 2009, no. 1, 3–43