On asymptotic stability of mechanical systems with nonstationary leading parameter under dissipative forces
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2012), pp. 97-109
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mechanical systems described by Lagrange differential equations of the second kind with nonstationary evolution of dissipative forces resulting in their domination are considered. In case of nonapplicability of known for nonstationary linearizations classical criteria, the theorems on asymptotic stability of the equilibrium position by the linear approximation are proved. The classes of nonstationary mechanical systems are determined, such that the asymptotic stability of their equilibrium is not exponential, however it is preserved for arbitrary perturbation whose order of smallness is higher than one. Furthermore, systems with essentially nonlinear dissipative forces are investigated. It is assumed that dissipative forces are determined by the homogeneous Rayleigh function, or depend on generalized coordinates. For such systems the conditions of asymptotic stability of the equilibrium position under the nonstationary domination of dissipative forces are obtained as well. It is proved that in the comparison with the case of linear dissipative forces the overdamping arises under higher velocities of evolution for essentially nonlinear ones.
Keywords: mechanical systems, stability, Lyapunov functions, nonstationary parameter.
Mots-clés : dissipative forces
@article{VSPUI_2012_2_a10,
     author = {A. Yu. Aleksandrov and A. A. Kosov and A. V. Platonov},
     title = {On asymptotic stability of mechanical systems with nonstationary leading parameter under dissipative forces},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {97--109},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_2_a10/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
AU  - A. A. Kosov
AU  - A. V. Platonov
TI  - On asymptotic stability of mechanical systems with nonstationary leading parameter under dissipative forces
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2012
SP  - 97
EP  - 109
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2012_2_a10/
LA  - ru
ID  - VSPUI_2012_2_a10
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%A A. A. Kosov
%A A. V. Platonov
%T On asymptotic stability of mechanical systems with nonstationary leading parameter under dissipative forces
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2012
%P 97-109
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2012_2_a10/
%G ru
%F VSPUI_2012_2_a10
A. Yu. Aleksandrov; A. A. Kosov; A. V. Platonov. On asymptotic stability of mechanical systems with nonstationary leading parameter under dissipative forces. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2012), pp. 97-109. http://geodesic.mathdoc.fr/item/VSPUI_2012_2_a10/

[1] Klimushev A. I., Krasovskii N. N., “Ravnomernaya asimptoticheskaya ustoichivost sistem differentsialnykh uravnenii s malym parametrom pri proizvodnykh”, Prikl. matematika i mekhanika, 25:4 (1961), 680–690 | Zbl

[2] Zubov V. I., Analiticheskaya dinamika giroskopicheskikh sistem, Sudostroenie, L., 1970, 320 pp. | Zbl

[3] Merkin D. R., Giroskopicheskie sistemy, Nauka, M., 1974, 344 pp. | Zbl

[4] Kuzmina L. K., “K resheniyu singulyarno vozmuschennoi zadachi ob ustoichivosti”, Prikl. matematika i mekhanika, 55:4 (1991), 594–601 | MR

[5] Kobrin A. I., Martynenko Yu. G., Novozhilov I. V., “O pretsessionnykh uravneniyakh giroskopicheskikh sistem”, Prikl. matematika i mekhanika, 40:2 (1976), 230–237 | Zbl

[6] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988, 252 pp. | MR | Zbl

[7] Kozlov V. V., “Ob ustoichivosti polozhenii ravnovesiya v nestatsionarnom silovom pole”, Prikl. matematika i mekhanika, 55:1 (1991), 12–19 | MR | Zbl

[8] Andreev A. S., “Ob asimptoticheskoi ustoichivosti i neustoichivosti nulevogo resheniya neavtonomnoi sistemy”, Prikl. matematika i mekhanika, 48:2 (1984), 225–232 | MR

[9] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001, 384 pp.

[10] Khatvani L., “O deistvii dempfirovaniya na svoistva ustoichivosti ravnovesii neavtonomnykh sistem”, Prikl. matematika i mekhanika, 65:4 (2001), 725–732 | MR

[11] Kosov A. A., “Ob eksponentsialnoi ustoichivosti i stabilizatsii neavtonomnykh mekhanicheskikh sistem s nekonservativnymi silami”, Prikl. matematika i mekhanika, 71:3 (2007), 411–426 | MR | Zbl

[12] Sun J., Wang O. G., Zhong Q. C., “A less conservative stability test for second-order linear time-varying vector differential equations”, Intern. Journal of Control, 80:4 (2007), 523–526 | DOI | MR | Zbl

[13] Zubov V. I., “Asimptoticheskoe polozhenie pokoya”, Dokl. RAN, 310:2 (1990), 288–290 | MR | Zbl

[14] Tereki I., Khatvani L., “Funktsii Lyapunova tipa mekhanicheskoi energii”, Prikl. matematika i mekhanika, 49:6 (1985), 894–899 | MR | Zbl

[15] Hatvani L., “On partial asymptotic stability and instability. III. Energy-like Ljapunov functions”, Acta Sci. Math., 49:1-4 (1985), 157–167 | MR | Zbl

[16] Aleksandrov A. Yu., Buzlukova O. A., Kosov A. A., “O sokhranenii ustoichivosti polozhenii ravnovesiya mekhanicheskikh sistem pri evolyutsii dissipativnykh sil”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2007, no. 1, 3–15 | Zbl

[17] Aleksandrov A. Yu., Kosov A. A., “Ob asimptoticheskoi ustoichivosti polozhenii ravnovesiya mekhanicheskikh sistem s nestatsionarnym veduschim parametrom”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 3, 8–22 | MR | Zbl

[18] Zubov V. I., “Kanonicheskaya struktura vektornogo silovogo polya”, Problemy mekhaniki tverdogo deformiruemogo tela, ed. L. I. Sedov, Sudostroenie, L., 1970, 167–170 | MR

[19] Malkin I. G., Teoriya ustoichivosti dvizheniya, Gostekhizdat, M., L., 1952, 432 pp. | MR | Zbl

[20] Leonov G. A., “Problema obosnovaniya pervogo priblizheniya v teorii ustoichivosti dvizheniya”, Uspekhi mekhaniki, 2:3 (2003), 3–35

[21] Agafonov S. A., “Ob ustoichivosti i stabilizatsii dvizheniya nekonservativnykh mekhanicheskikh sistem”, Prikl. matematika i mekhanika, 74:4 (2010), 560–566

[22] Vulfson I. I., “Uchet nelineinykh dissipativnykh sil pri ogranichennoi iskhodnoi informatsii”, Teoriya mekhanizmov i mashin, 2003, no. 1, 70–77

[23] Aleksandrov A. Yu., Ustoichivost dvizhenii neavtonomnykh dinamicheskikh sistem, Izd-vo S.-Peterb. un-ta, SPb., 2004, 186 pp.

[24] Zubov V. I., Lektsii po teorii upravleniya, Nauka, M., 1975, 496 pp. | MR | Zbl